
MicroXRCE-DDS Documentation
Release 2.1.1

eProsima

Mar 30, 2023

INSTALLATION MANUAL

1 Main Features 3

2 Installation 5

3 User manual 7

4 eProsima Micro XRCE-DDS Gen 9

5 Structure of the documentation 11

i

ii

MicroXRCE-DDS Documentation, Release 2.1.1

eProsima Micro XRCE-DDS is a software solution that allows communicating eXtremely Resource Constrained En-
vironments (XRCEs) with an existing DDS network. This implementation complies with the specification of the
eXtremely Resource Constrained Environments DDS (DDS-XRCE) protocol as defined and maintained by the Object
Management Group (OMG) consortium.

The eprosima Micro XRCE-DDS library implements a client-server protocol that enables resource-constrained devices
(clients) to take part in DDS communications. The eProsima Micro XRCE-DDS Agent (server) acts as a bridge to
make this communication possible. It acts on behalf of the Micro XRCE-DDS Clients by enabling them to take part
to the DDS Global Data Space as DDS publishers and/or subscribers. It also allows for Remote Procedure Calls, as
defined by the DDS-RPC standard, which implement a request/reply communication pattern.

eProsima Micro XRCE-DDS provides both a plug and play eProsima Micro XRCE-DDS Agent and an API layer which
allows the user to implement the eProsimaMicro XRCE-DDS Clients.

INSTALLATION MANUAL 1

https://www.omg.org/spec/DDS-XRCE/
https://www.omg.org/spec/DDS-RPC/About-DDS-RPC/

MicroXRCE-DDS Documentation, Release 2.1.1

2 INSTALLATION MANUAL

CHAPTER

ONE

MAIN FEATURES

High performance. The eProsima Micro XRCE-DDS Client uses a static low-level serialization library (eProsima
Micro CDR) that serializes in XCDR.

Low resources. The Client library is dynamic and static memory free, as the only memory footprint is due to the
stack growth. It can manage a simple publisher/subscriber with less of 2 kB of RAM. Besides, the Client is built
according to a profiles concept, allowing to add or remove functionalities to/from the library at the same time as
changing the binary size.

Multi-platform. The OS dependencies are treated as pluggable modules, so that users can easily implement their
platform-specific modules for the eProsima Micro XRCE-DDS Client library. By default, the project can run
both over the standard Operating Systems Linux and Windows, and on the Real-Time Operating Systems Nuttx,
FreeRTOS and Zephyr.

Compiler dependencies free. The Client library uses pure C99 standard. No C compiler extensions are used.

Free and Open Source. The Client library, the Agent executable, the generator tool and other internal dependencies
as eProsima Micro CDR or eProsima Fast DDS are all free and open-source.

Easy to use. The project provides several examples. This documentation guides the user step-by-step through some
of them, namely how to create a publisher/subscriber, a requester/replier and a Peer-to-Peer publiser/subscriber
Client example. An interactive demo can also be found to interact with the ShapesDemo application, useful to
understand the DDS-XRCE protocol and to make tests. The Client API is thoroughly explained.

Implementation of the DDS-XRCE standard. DDS-XRCE is a standard communication protocol by the OMG con-
sortium focused on communicating eXtremely Resource Constrained Environments with the DDS world.

Best effort and reliable communication. eProsima Micro XRCE-DDS supports both best-effort and reliable com-
munication modes. The first implements a fast and light communication, while the second ensures reliability
independently of the transport layer used underneath.

Pluggable transport layer. eProsima Micro XRCE-DDS is not built over a specific transport protocol as Serial or
UDP. It is agnostic about the transport used, and give the user the possibility of implementing the needed
transport easily. By default, UDP, TCP, and Serial transports are provided. Also, an easy way to implement
Custom transport is offered.

Commercial support Available at support@eprosima.com

3

https://github.com/eProsima/Micro-CDR
https://github.com/eProsima/Micro-CDR
https://www.omg.org/spec/DDS-XTypes/1.2/PDF
https://github.com/eProsima/Micro-XRCE-DDS-Client/tree/master/examples
https://github.com/eProsima/ShapesDemo
https://www.omg.org/spec/DDS-XRCE/1.0/Beta1/PDF

MicroXRCE-DDS Documentation, Release 2.1.1

4 Chapter 1. Main Features

CHAPTER

TWO

INSTALLATION

To install eProsima Micro XRCE-DDS, follow the instructions provided in the Installation page.

5

MicroXRCE-DDS Documentation, Release 2.1.1

6 Chapter 2. Installation

CHAPTER

THREE

USER MANUAL

To test eProsima Micro XRCE-DDS, follow the Quick start instructions. This page shows how to create simple
publisher/subscriber and requester/replier applications.

Additionally, there is an interactive example called Shapes Demo allowing users to create entities and to send/receive
topics by instructions given by the command line. This example is useful to understand how the DDS-XRCE protocol
interfaces with the DDS World.

To learn how to handle all the ingredients needed to create a Client, carefully read the Getting started page. This page
describes how to use the eProsima Micro XRCE-DDS API in order to set up and run a Client application.

A generic introduction to the library can be found in the Overview page. To know more about Clients and Agents,
find detailed information in the eProsima Micro XRCE-DDS Client and Client API pages, and in the eProsima Micro
XRCE-DDS Agent and Agent API pages respectively.

7

MicroXRCE-DDS Documentation, Release 2.1.1

8 Chapter 3. User manual

CHAPTER

FOUR

EPROSIMA MICRO XRCE-DDS GEN

To create a serialization/deserialization topic code for the eProsima Micro XRCE-DDS Client, there is a tool called
microxrceddsgen. Information about this tool can be found in the eProsima Micro XRCE-DDS Gen page.

9

MicroXRCE-DDS Documentation, Release 2.1.1

10 Chapter 4. eProsima Micro XRCE-DDS Gen

CHAPTER

FIVE

STRUCTURE OF THE DOCUMENTATION

5.1 External dependencies

In this section we list the dependencies of the libraries composing the eProsima Micro XRCE-DDS suite.

5.1.1 eProsima Micro XRCE-DDS Client

The eProsima Micro XRCE-DDS Client has no external dependencies.

5.1.2 eProsima Micro XRCE-DDS Agent

eProsima Fast DDS The eProsima Micro XRCE-DDS Agent requires eProsima Fast DDS to work. If eProsima Fast
DDS is already installed in the system, the Agent will look for it and use it. Otherwise, it will be automatically
downloaded together with the Agent application.

If willing to install eProsima Fast DDS, follow the instructions provided in the installation guide of the eProsima
Fast DDS documentation.

5.1.3 eProsima Micro XRCE-DDS Gen

In order to compile the code generation tool Micro XRCE-DDS Gen, the following packages need to be installed in
the system.

Java JDK The JDK is a development environment for building applications and components using the Java language.
Download and install it following the steps provided in the Oracle website.

Gradle Gradle is an open-source build automation tool, version 7.0 or higher is required. Download and install it
following the steps provided in the Gradle website.

5.1.4 Windows

Microsoft Visual C++ 2017 or greater eProsima Micro XRCE-DDS is supported on Windows over the Microsoft
Visual C++ 2017 or greater frameworks.

11

https://fast-dds.docs.eprosima.com/en/latest/
https://fast-dds.docs.eprosima.com/en/latest/
https://www.oracle.com/java/technologies/javase-downloads.html
https://gradle.org/install/

MicroXRCE-DDS Documentation, Release 2.1.1

5.2 Installation

In this section, instructions are provided to install the following packages:

• Using pre-installed docker images

• Installing the Agent standalone

• Installing the Client standalone

• Installing the Micro XRCE-DDS Gen tool

• Installing Agent and Client

The user can decide wether to install the Agent and Client as stand-alone packages, or together. If the first approach is
chosen, refer to the Release Notes section in order to match versions that are compatible.

5.2.1 Using pre-installed docker images

Download here the Micro XRCE-DDS and Fast-DDS Suite docker image that contains a pre-installed client and agent
as well as some compiled examples. More information about this Docker image can be found here.

5.2.2 Installing the Agent standalone

Clone the project from GitHub:

$ git clone https://github.com/eProsima/Micro-XRCE-DDS-Agent.git
$ cd Micro-XRCE-DDS-Agent
$ mkdir build && cd build

On Linux, inside of the build folder, execute the following commands:

$ cmake ..
$ make
$ sudo make install

On Windows first select the Visual Studio version:

$ cmake -G "Visual Studio 15 2017 Win64" ..
$ cmake --build .
$ cmake --build . --target install

Note: The eProsima Micro XRCE-DDS Agent can be configured at compile-time via several CMake definitions. Find
them listed in the Configuration section of the eProsima Micro XRCE-DDS Agent page.

Now the the executable eProsima Micro XRCE-DDS Agent is installed in the system. Before running it, add /usr/
local/lib to the dynamic loader-linker directories.

sudo ldconfig /usr/local/lib/

Important: The eProsima Micro XRCE-DDS Agent executable comes with a rich CLI. Find out all the options
offered by this CLI when running the Agent in the Agent CLI section of the eProsima Micro XRCE-DDS Agent page.

12 Chapter 5. Structure of the documentation

https://www.eprosima.com/index.php/downloads-all

MicroXRCE-DDS Documentation, Release 2.1.1

Installation from Snap package

The eProsima Micro XRCE-DDS Agent can also be installed as a Snap package..

To this aim, simply execute sudo snap install micro-xrce-dds-agent in the console. This will down-
load the Snap package corresponding to the stable version, that is, the master branch on GitHub.

For downloading the Snap image corresponding to the develop branch, add the --edge flag to the installation com-
mand.

Note: The Snap package is only available for Linux.

Using the provided Docker image

The eProsima Micro XRCE-DDS Agent can also be launched directly from its dedicated Docker image..

Pull the image by executing docker pull eprosima/micro-xrce-dds-agent:<tag> <<args>>, with
tag being one of the following options:

• stable: Micro XRCE-DDS Agent master branch.

• latest: Micro XRCE-DDS Agent develop branch)

• vM.m.p: Micro XRCE-DDS Agent tagged versions, with the Major, minor, patch structure.

The accepted arguments for <<args>> are exactly the same which are listed in the Agent CLI section.

5.2.3 Installing the Client standalone

Clone the project from GitHub:

$ git clone https://github.com/eProsima/Micro-XRCE-DDS-Client.git
$ cd Micro-XRCE-DDS-Client
$ mkdir build && cd build

On Linux, inside of build folder, execute the following commands:

$ cmake ..
$ make
$ sudo make install

Now the the executable eProsima Micro XRCE-DDS Client is installed in the system. Before running it, add /usr/
local/lib to the dynamic loader-linker directories.

sudo ldconfig /usr/local/lib/

On Windows first select the Visual Studio version:

$ cmake -G "Visual Studio 15 2017 Win64" ..
$ cmake --build .
$ cmake --build . --target install

Note: In order to install the eProsima Micro XRCE-DDS Client examples, add
-DUCLIENT_BUILD_EXAMPLES=ON to the cmake .. command-line options. This flag will enable the
compilation of the examples. In addition to this flag, there are several other CMake definitions for configuring the

5.2. Installation 13

https://snapcraft.io/micro-xrce-dds-agent
https://hub.docker.com/r/eprosima/micro-xrce-dds-agent
https://github.com/eProsima/Micro-XRCE-DDS-Agent/tree/master
https://github.com/eProsima/Micro-XRCE-DDS-Agent/tree/develop
https://github.com/eProsima/Micro-XRCE-DDS-Agent/tags

MicroXRCE-DDS Documentation, Release 2.1.1

building of the client library at compile-time. Find them in the Profiles and configurations sections of the
eProsima Micro XRCE-DDS Client page.

For building a Client app in the host machine, compile against the following libs:

gcc <main.c> -lmicrocdr -lmicroxrcedds_client

Using the provided Docker image

The eProsima Micro XRCE-DDS Client comes with a Docker image where the library is installed together with the
provided examples, so they can easily be executed by the users.

Pull the image by executing docker pull eprosima/micro-xrce-dds-client:<tag> <<args>>,
with tag being one of the following options:

• stable: Micro XRCE-DDS Client master branch.

• latest: Micro XRCE-DDS Client develop branch

• vM.m.p: Micro XRCE-DDS Client tagged versions, with the Major, minor, patch structure.

The accepted arguments for <<args>> are the examples’ executable names, followed by the arguments required for
each example to work. Find a list of all the available examples here. Note that they may differ between master and
develop branches and the tagged versions.

5.2.4 Installing the Micro XRCE-DDS Gen tool

Install dependencies, clone the project from GitHub and build:

$ git clone https://github.com/eProsima/Micro-XRCE-DDS-Gen.git
$ cd Micro-XRCE-DDS-Gen
$ git submodule init
$ git submodule update
$./gradlew assemble

The Micro XRCE-DDS-Gen tool will be available as:

$./scripts/microxrceddsgen -help

5.2.5 Installing Agent and Client

Clone the project from GitHub:

$ git clone https://github.com/eProsima/Micro-XRCE-DDS.git
$ cd Micro-XRCE-DDS
$ mkdir build && cd build

On Linux, inside of the build folder, execute the following commands:

$ cmake ..
$ make
$ sudo make install

On Windows choose the Visual Studio version using the CMake option -G, for example:

14 Chapter 5. Structure of the documentation

https://hub.docker.com/r/eprosima/micro-xrce-dds-agent
https://github.com/eProsima/Micro-XRCE-DDS-Client/tree/master
https://github.com/eProsima/Micro-XRCE-DDS-Client/tree/develop
https://github.com/eProsima/Micro-XRCE-DDS-Client/tags
https://github.com/eProsima/Micro-XRCE-DDS-Client/tree/master/examples

MicroXRCE-DDS Documentation, Release 2.1.1

$ cmake -G "Visual Studio 15 2017 Win64" ..
$ cmake --build . --target install

Now both the eProsima Micro XRCE-DDS Agent and the eProsima Micro XRCE-DDS Client are installed in the
system.

Note: In order to install the eProsima Micro XRCE-DDS Gen tool as well, add -DUXRCE_ENABLE_GEN=ON to
the cmake .. command-line options. This flag will enable the downloading and compilation of the code generating
tool.

Note: In order to install the eProsima Micro XRCE-DDS examples, add -DUXRCE_BUILD_EXAMPLES=ON to the
cmake .. command-line options. This flag will enable the compilation of the examples.

Using the provided Docker image

eProsima Micro XRCE-DDS is also available as a whole package in a Docker image.

Within this Docker image, the Micro XRCE-DDS Agent standalone application and library are installed, as well as the
Micro XRCE-DDS Client library and built-in examples.

Pull the image by executing docker pull eprosima/micro-xrce-dds:<tag> <<args>>, with tag be-
ing one of the following options:

• stable: Micro XRCE-DDS master branch.

• latest: Micro XRCE-DDS develop branch

• vM.m.p: Micro XRCE-DDS tagged versions, with the Major, minor, patch structure.

The accepted arguments for <<args>> are:

• To launch the Micro XRCE-DDS Agent: MicroXRCEAgent <<agent_args, being <<agent_args>>
the ones described in the Agent CLI section.

• The Micro XRCE-DDS Client examples’ executable names, as explained above.

5.3 Overview

This section provides an overview of the Micro XRCE-DDS library. It is organized as follows:

• DDS-XRCE protocol

• DDS standard and Fast DDS

• Operations and entities

5.3. Overview 15

https://hub.docker.com/r/eprosima/micro-xrce-dds-agent
https://github.com/eProsima/Micro-XRCE-DDS/tree/master
https://github.com/eProsima/Micro-XRCE-DDS/tree/develop
https://github.com/eProsima/Micro-XRCE-DDS/tags

MicroXRCE-DDS Documentation, Release 2.1.1

5.3.1 DDS-XRCE protocol

eProsima Micro XRCE-DDS implements the DDS-XRCE protocol specified in the DDS for eXtremely Resource Con-
strained Environments standard as defined and maintained by the Object Management Group (OMG) consortium.

This protocol allows resource-constrained devices to communicate with a larger DDS (Data Distribution Service)
network. This communication is based on a client-server architecture, where the server (XRCE Agent) acts as an
intermediary between the clients (XRCE Clients) and the DDS Global Data Space.

The DDS-XRCE protocol defines the wire protocol between XRCE Agents and XRCE Clients. The messages ex-
changed revolve around operations and their responses. The XRCE Clients request the XRCE Agents to run opera-
tions, and the XRCE Agents reply with the result of the requested operations. Making use of these operations, the
XRCE Clients can create the DDS entities’ hierarchy necessary to publish and/or receive data from DDS. The DDS
entities are created and stored on the XRCE Agent’s side so the XRCE Clients can reuse them at will with subsequent
operations requests.

eProsima Micro XRCE-DDS implements the DDS-XRCE protocol using an XRCE Agent as a broker and providing
a C API for developing XRCE Clients applications. The Micro XRCE-DDS Agent uses eProsima Fast DDS to reach
the DDS Global Data Space.

5.3.2 DDS standard and Fast DDS

eProsima Fast DDS is a C++ implementation of the DDS standard and makes underneath use of the RTPS (Real-Time
Publish-Subscribe) wire protocol, which provides publisher-subscriber communications over unreliable transports
such as UDP. Both the DDS specification and the RTPS protocol are defined and maintained by the OMG consortium.

For more extensive information, please refer to the official documentation: eProsima Fast DDS.

5.3.3 Operations and entities

The communication between XRCE Clients and XRCE Agents is based upon Operations and responses. Clients request
operations to the Agents, which generate responses with the result of these operations. The Client, once informed back
on the result of th requested operations, will be able to perform subsequent actions and/or request further operations.

The communication starts with a handshake for the Agent to acknowledge that a Client is present in the network. This
happens via a Create session operation forwarded from the Client to the Agent, with which the latter registers the
Client. Without registering a session, all the subsequent operations sent to the Agent will be refused. Once registered,
the Client can request operations to the Agent, through which it can create and query entities. The communication
with DDS is handled by the Agent using these Entities.

16 Chapter 5. Structure of the documentation

https://www.omg.org/spec/DDS-XRCE/1.0/Beta1/PDF
https://www.omg.org/spec/DDS/About-DDS/
http://eprosima-fast-dds.readthedocs.io

MicroXRCE-DDS Documentation, Release 2.1.1

The Create entity operation is the request used to create entities in the Agent. Each of these entities corresponds to an
eProsima Fast DDS object.

For sending and receiving data from/to DDS, the Client has access to the DataWriter and DataReader entities. These
entities handle the writing/reading operations. For sending and receiving any topic, the Write Data and Read Data
operations must be used.

To remove any entity from the Agent, use the Delete entity operation. Also, to log out a Client session from the Agent,
use the Delete session operation.

Operations

Operations are the possible actions the eProsima Micro XRCE-DDS Client can request to the eProsima Micro XRCE-
DDS Agent. Operations revolve around Entities. The eProsima Micro XRCE-DDS Agent will respond to all the
requests with the status of the operation.

Op-
era-
tion

Description

Cre-
ate
ses-
sion

With this operation Clients asks the Agents to register a session. It is the first operation that must be
performed. If this operation fails or is missing, any of the following operations will not work. If it is
successful, it creates the session establishing the Client-Agent connection.

Delete
ses-
sion

This operation deletes the Client-Agent connection and removes all entities associated with it. After this
operation, any other operation except Create session will fail.

Cre-
ate
entity

A session can create all the entities it needs. There is a Create entity operation for each entity the session
can handle. Each Create entity operation is related to an ID for its management.

Delete
entity

Analogously, a session can delete the entities that were previously created on the Agent. To drop an entity,
the entity ID must be used.

Re-
quest
Data

This operation configures the data reception, which the Agent will deliver from the DDS data space to
the Client. Data are received asynchronously, according to the data delivery control set in this operation.
Reading data is done using a DataReader entity.

Entities

The protocol underlying eProsima Micro XRCE-DDS (DDS-XRCE), defines entities that have a direct correspondence
with their analogous actors on eProsima Fast DDS. The entities manage the communication between eProsima Micro
XRCE-DDS Clients and the DDS Global Data Space. Entities are stored in the eProsima Micro XRCE-DDS Agent and
the eProsima Micro XRCE-DDS Client can create, use and destroy these entities.

The entities are uniquely identified by an ID called Object ID. The Object ID is the way a Client refers to them inside
an Agent. In most of the Client request operations it is necessary to specify an ID referring to one of the Client entities
stored in the Agent.

Find below a table describing the entities the Client can interact with.

5.3. Overview 17

MicroXRCE-DDS Documentation, Release 2.1.1

Entity Description
Participant Participants can hold any number of Publishers and/or Subscribers.
Publisher Publishers can hold any number of data writers.
Subscriber Subscribers can hold any number of data readers.
Topic Topic data is the base of the communication. A Topic is composed of a name and a data type.
DataWriter This is the endpoint able to write Topic data.
DataReader This is the endpoint able to read Topic data.
Requester This is the endpoint able to write Request data and to read Reply data.
Replier This is the endpoint able to read Request data and to write Reply data.

This figure shows the entities hierarchy

Micro XRCE-DDS Agent ProxyClient

Participant

1

Publisher

DataWriter

Subscriber

DataReader

* *

*

*

1

1

1 1

* *

*

11

11

TopicRequester Replier

1

* *

The creation the entities listed above needs to be done using the DDS XML configuration of the object to create. The
XML configuration follows the same rules as in eProsima Fast DDS.

The data sent by the Client to the DDS Global Data Space closely resembles that of eProsima Fast DDS. The Interface
Definition Language (IDL) is used to define the type and must be known by the Client. Having the type defined as
IDL, we provide the eProsima Micro XRCE-DDS Gen tool. This tool can generate a compatible type that the XRCE
Client can use to send and receive. The type has to match the one used on the DDS Side.

18 Chapter 5. Structure of the documentation

https://www.omg.org/spec/IDL/4.2/PDF
https://www.omg.org/spec/IDL/4.2/PDF

MicroXRCE-DDS Documentation, Release 2.1.1

5.4 Quick start

eProsima Micro XRCE-DDS provides a C API which allows the creation of eProsima Micro XRCE-DDS Clients that
can either publish/subscribe to topics from the DDS Global Data Space, or act as client-service applications following
a request/reply pattern.

In this section, we will guide the user through the deployment of two out-of-the-box examples. In the first one, an
eProsima Micro XRCE-DDS Agent bridges two eProsima Micro XRCE-DDS Clients publishing and subscribing to the
DDS world. The second example shows instead the deployment of a client-service application using the Requester
and Replier entities, also put into communication via an eProsima Micro XRCE-DDS Agent.

The section is organized as follows:

• Running an Agent

• Running a Publisher-Subscriber example

• Running a Requester/Replier example

5.4.1 Running an Agent

First of all, install the Agent as explained in the Installing the Agent standalone section. On Linux, this would be:

$ git clone https://github.com/eProsima/Micro-XRCE-DDS-Agent.git
$ cd Micro-XRCE-DDS-Agent
$ mkdir build && cd build
$ cmake ..
$ make
$ sudo make install

After having installed the Agent system-wide, it’s possible to launch it.

For this example, the Client-Agent communication will be done through UDP, using the port 2019 and with the XML
creation mode, which is the default mode for creating entities:

$ cd /usr/local/bin && MicroXRCEAgent udp4 -p 2019

5.4.2 Running a Publisher-Subscriber example

In this section, we guide the user through the configuration and deployment of a simple publish/subscribe example
where the communication is mediated by the Agent created above.

Before considering the publisher and subscriber examples, it is useful to briefly summarize how the Publisher and
Subscriber entities work, as well as to list the functions related to both entities.

Publisher The Publisher will be associated with a Topic and will handle a DDS publisher that publishes topics.

To create a Publisher entity, the uxr_buffer_create_publisher_xml or
uxr_buffer_create_publisher_ref shall be used. Once created, topics can be published through
uxr_prepare_output_stream.

Subscriber The Subscriber will be associated with a Topic and will handle a DDS subscriber that receives topics.

To create a Subscriber entity, the uxr_buffer_create_subscriber_xml or
uxr_buffer_create_subscriber_ref shall be used. Topics can be received by sending a data
request to the Agent with uxr_buffer_request_data, and through the on_topic callback which shall be
set by the uxr_set_topic_callback. This callback has a parameter request_id which identifies the data
request.

5.4. Quick start 19

MicroXRCE-DDS Documentation, Release 2.1.1

All the files and the code used in this example can be found in the Micro-XRCE-DDS-
Client/examples/PublishHelloWorld and Micro-XRCE-DDS-Client/examples/SubscribeHelloWorld folders.

Publisher application

Let’s now install the Client locally, and with the -DUCLIENT_BUILD_EXAMPLES=ON flag enabled, so as to activate
the compilation of the examples. On Linux, this implies running the following:

$ git clone https://github.com/eProsima/Micro-XRCE-DDS-Client.git
$ cd Micro-XRCE-DDS-Client
$ mkdir build && cd build
$ cmake .. -DUCLIENT_BUILD_EXAMPLES=ON
$ make

At this point, it’s possible to launch the PublishHelloWorldClient executable located in the folder
Micro-XRCE-DDS-Client/build/examples/PublishHelloWorld, which’ll make the Client pub-
lish in the DDS World the HelloWorld topic (take a look at the IDL defining this topic in the file
Micro-XRCE-DDS-Client/examples/PublishHelloWorld/HelloWorld.idl).

$ examples/PublishHelloWorld/PublishHelloWorldClient 127.0.0.1 2019

The source code of the PublishHelloWorldClient can be found in Micro-XRCE-DDS-Client/
examples/PublishHelloWorld/main.c.

Subscriber application

After having executed the publisher app, we can launch the SubscribeHelloWorldClient executable, which
is located in the folder Micro-XRCE-DDS-Client/build/examples/SubscribeHelloWorld, which’ll
make this Client subscribe to the same HelloWorld topic from the DDS World.

$ examples/SubscribeHelloWorld/SubscribeHelloWorldClient 127.0.0.1 2019

The source code of the SubscribeHelloWorldClient can be found in Micro-XRCE-DDS-Client/
examples/SubscribeHelloWorld/main.c.

At this point, the subscriber will receive the topics that are being sent by the publisher.

In order to see the messages from the DDS Global Data Space point of view, use the eProsima Fast DDS HelloWorld
example running a subscriber. Find more information on how to do so at Fast DDS HelloWorld.

5.4.3 Running a Requester/Replier example

This section shows an example of a client-service application using the Requester and Replier entities. This application
has two ends, the client (RequestAdder) and the service (ReplyAdder). On the one hand, the client is in charge of
sending requests which contain two integers, as well as receiving the responses from the service. On the other hand,
the service is in charge of receiving the requests from the client, summing the two integers, and finally of sending the
response to the client.

Before considering the client and service examples, it is useful to briefly summarize how the Requester and Replier
entities work, as well as to list the functions related to both entities.

Requester The Requester entity is composed of a Publisher and a Subscriber associated with a RequestTopic and a
ReplyTopic respectively. The Publisher is in charge of sending the request, while the Susbscriber receives the
replies.

20 Chapter 5. Structure of the documentation

https://github.com/eProsima/Micro-XRCE-DDS-Client/tree/master/examples/PublishHelloWorld
https://github.com/eProsima/Micro-XRCE-DDS-Client/tree/master/examples/PublishHelloWorld
https://github.com/eProsima/Micro-XRCE-DDS-Client/tree/master/examples/SubscribeHelloWorld
https://fast-dds.docs.eprosima.com/en/latest/fastdds/getting_started/simple_app/simple_app.html#writing-a-simple-publisher-and-subscriber-application

MicroXRCE-DDS Documentation, Release 2.1.1

To create a Requester entity, the uxr_buffer_create_requester_xml or
uxr_buffer_create_requester_ref shall be used. Once created, requests can be sent
through uxr_buffer_request. Replies can be received by sending a data request to the Agent
with uxr_buffer_request_data, and through the on_reply callback which shall be set by the
uxr_set_reply_callback. This callback has a parameter reply_id which corresponds to the
identifier returned by the uxr_buffer_request call.

Replier The Reply entity is a mirror of the Requester, that is, it contains a Publisher and a Subscriber as well, but
the topic association is reversed, as the Publisher is associated with the ReplyTopic and the Subscriber to the
RequestTopic. In this case, the Subscriber is in charge of receiving the request from the Requester, while the
Publisher sends the replies.

To create a Replier entity, the uxr_buffer_create_replier_xml or
uxr_buffer_create_replier_ref shall be used. Once created, replies can be sent through
uxr_buffer_reply. Requests can be received by sending a data request to the Agent with
uxr_buffer_request_data, and through the on_request callback which shall be set by the
uxr_set_request_callback. This callback has a parameter sample_id which identifies the request and
should be used in the uxr_buffer_reply.

All the files and the code used in this example can be found in the Micro-XRCE-DDS-Client/examples/RequestAdder
and Micro-XRCE-DDS-Client/examples/ReplyAdder folders.

Requester application

Let’s now install the Client locally, and with the -DUCLIENT_BUILD_EXAMPLES=ON flag enabled, so as to activate
the compilation of the examples. On Linux, this implies running the following:

$ git clone https://github.com/eProsima/Micro-XRCE-DDS-Client.git
$ cd Micro-XRCE-DDS-Client
$ mkdir build && cd build
$ cmake .. -DUCLIENT_BUILD_EXAMPLES=ON
$ make

At this point, it’s possible to launch the RequestAdder executable located in the folder
Micro-XRCE-DDS-Client/build/examples/RequestAdder, which’ll make the Client send two
integers as a request, and receive the sum of both integers as a response.

$ examples/RequestAdder/RequestAdder 127.0.0.1 2019

The source code of the RequestAdder can be found in Micro-XRCE-DDS-Client/examples/
RequestAdder/main.c.

Replier application

After having executed the Requester app, we can launch the ReplyAdder executable, which is located in the
folder Micro-XRCE-DDS-Client/build/examples/ReplyAdder, which’ll make this Client receive re-
quests composed by two integers, sum both numbers, and finally send the response.

$ examples/ReplyAdder/ReplyAdder 127.0.0.1 2019

The source code of the ReplyAdder can be found in Micro-XRCE-DDS-Client/examples/ReplyAdder/
main.c.

At this point, the Requester and the Replier will start communicating.

5.4. Quick start 21

https://github.com/eProsima/Micro-XRCE-DDS-Client/tree/master/examples/RequestAdder
https://github.com/eProsima/Micro-XRCE-DDS-Client/tree/master/examples/ReplyAdder

MicroXRCE-DDS Documentation, Release 2.1.1

5.4.4 Learn More

Find a detailed explanation of the code used to write and run these applications in the Getting started section.

Find other relevant material:

• eProsima Fast DDS: eProsima Fast DDS

• To learn how to install eProsima Micro XRCE-DDS read: Installation

• To learn more about eProsima Micro XRCE-DDS read: Overview

• To learn more about eProsima Micro XRCE-DDS Gen read: eProsima Micro XRCE-DDS Gen

5.5 Getting started

This page shows how to get started with the eProsima Micro XRCE-DDS Client. We will create a Client that can
publish and subscribe to a topic, or engage in a request-reply kind of communication. Also, we illustrate how to
create C code consumable by the client from a IDL file with eProsima Micro XRCE-DDS Gen. Finally, we provide a
deployment example.

The section is organized as follows:

• Prerequisites

• Generate code from an IDL

• Initialize a Session

• Setup a Participant

• Create topics

• Publishers & Subscribers

• DataWriters & DataReaders

• Requester & Replier

• Agent response

• Write Data

• Read Data

• Close the Client

• Deployment example

Hint: The code shown here can be found in the examples below:

• examples/PublishHelloWorld

• examples/SubscribeHelloWorld

• examples/ReplyAdder

• examples/RequestAdder

• examples/Deployment

22 Chapter 5. Structure of the documentation

https://fast-dds.docs.eprosima.com/en/latest/

MicroXRCE-DDS Documentation, Release 2.1.1

Note: This example makes use of the creation mode by XML, which is one of the two possible representation
formats for creating DDS entities: by XML or by reference (see the Creation Mode: Client and Creation Mode: Agent
sections).

5.5.1 Prerequisites

First, make sure to have correctly installed the following:

• Installing the Agent standalone.

• Installing the Client standalone.

• Installing the Micro XRCE-DDS Gen tool.

5.5.2 Generate code from an IDL

We will use HelloWorld as our Topic whose IDL is the following:

struct HelloWorld
{

unsigned long index;
string message;

};

In the Client we need to create an equivalent C type with its serialization/deserialization code. This is done automati-
cally by eProsima Micro XRCE-DDS Gen:

$ microxrceddsgen HelloWorld.idl

5.5.3 Initialize a Session

In the source example file, we include the generated type code, to have access to its serialization/deserialization
functions along to the writing function. Also, we will specify the max buffer for the streams and its historical associated
for the reliable streams.

#include "HelloWorldWriter.h"

#define STREAM_HISTORY 8
#define BUFFER_SIZE UXR_CONFIG_UDP_TRANSPORT_MTU * STREAM_HISTORY

Before create a Session we need to indicate the transport to use (the Agent must be configured for listening from UDP
at port 2018).

uxrUDPTransport transport;
if (!uxr_init_udp_transport(&transport, UXR_IPv4, "127.0.0.1", "2018"))
{

printf("Error at create transport.\n");
return 1;

}

Next, we will create a session that allows us interacting with the Agent:

5.5. Getting started 23

MicroXRCE-DDS Documentation, Release 2.1.1

uxrSession session;
uxr_init_session(&session, &transport.comm, 0xABCDABCD);
uxr_set_topic_callback(&session, on_topic, NULL);
if(!uxr_create_session(&session))
{

printf("Error at create session.\n");
return 1;

}

The first function uxr_init_session initializes the session structure with the transport and the Client Key
(the session identifier for an Agent). The uxr_set_topic_callback function is for registering the function
on_topic which will be called when the Client receives a topic. Once the session has been initialized, we can
send the first message for logging the Client in the Agent side: uxr_create_session. This function will try
to connect with the Agent by CONFIG_MAX_SESSION_CONNECTION_ATTEMPTS attempts (configurable as a
CMake argument).

Optionally, we also could add a status callback with the function uxr_set_status_callback, but for this ex-
ample, we do not need it.

Once we have logged in the session successfully, we can create the streams that we will use. In this case, we will use
two, both reliables, for input and output.

uint8_t output_reliable_stream_buffer[BUFFER_SIZE];
uxrStreamId reliable_out = uxr_create_output_reliable_stream(&session, output_
→˓reliable_stream_buffer, BUFFER_SIZE, STREAM_HISTORY);

uint8_t input_reliable_stream_buffer[BUFFER_SIZE];
uxrStreamId reliable_in = uxr_create_input_reliable_stream(&session, input_reliable_
→˓stream_buffer, BUFFER_SIZE, STREAM_HISTORY);

To publish and/or subscribes to a topic, we need to create a hierarchy of XRCE entities in the Agent side. These entities
will be created from the Client.

24 Chapter 5. Structure of the documentation

MicroXRCE-DDS Documentation, Release 2.1.1

Micro XRCE-DDS Agent ProxyClient

Participant

1

Publisher

DataWriter

Subscriber

DataReader

* *

*

*

1

1

1 1

* *

*

11

11

TopicRequester Replier

1

* *

5.5.4 Setup a Participant

For establishing DDS communication, we need to create a Participant entity for the Client in the Agent. We can do
this calling Create participant operation:

uxrObjectId participant_id = uxr_object_id(0x01, UXR_PARTICIPANT_ID);
const char* participant_xml = "<dds>"

"<participant>"
"<rtps>"

"<name>default_xrce_participant</name>"
"</rtps>"

"</participant>"
"</dds>";

uint16_t participant_req = uxr_buffer_create_participant_ref(&session, reliable_out,
→˓participant_id, participant_xml, UXR_REPLACE);

In any XRCE Operation that creates an entity, an Object ID is necessary. It is used to represent and manage the entity
in the Client side. In this case, we will create the entity by its XML description, but also could be done by a reference
of the entity in the Agent. Each operation returns a Request ID. This identifier of the operation can be used later for
associating the status with the operation. In this case, the operation has been written into the stream reliable_out.
Later, in the run_session function, the data written in the stream will be sent to the Agent.

5.5. Getting started 25

MicroXRCE-DDS Documentation, Release 2.1.1

5.5.5 Create topics

Once the Participant has been created, we can use Create topic operation to register a Topic entity within the Partici-
pant.

uxrObjectId topic_id = uxr_object_id(0x01, UXR_TOPIC_ID);
const char* topic_xml = "<dds>"

"<topic>"
"<name>HelloWorldTopic</name>"
"<dataType>HelloWorld</dataType>"

"</topic>"
"</dds>";

uint16_t topic_req = uxr_buffer_create_topic_xml(&session, reliable_out, topic_id,
→˓participant_id, topic_xml, UXR_REPLACE);

As any other XRCE Operation used to create an entity, an Object ID must be specified to represent the entity. The
participant_id is the participant where the Topic will be registered. To determine which topic will be used, an
XML is sent to the Agent for creating and defining the Topic in the DDS Global Data Space. That definition consists
of a name and a type.

5.5.6 Publishers & Subscribers

Similar to Topic registration, we can create Publishers and Subscribers entities. We create a publisher or subscriber
on a participant entity, so it is necessary to provide the ID of the Participant which will hold those Publishers or
Subscribers.

uxrObjectId publisher_id = uxr_object_id(0x01, UXR_PUBLISHER_ID);
const char* publisher_xml = "";
uint16_t publisher_req = uxr_buffer_create_publisher_xml(&session, reliable_out,
→˓publisher_id, participant_id, publisher_xml, UXR_REPLACE);

uxrObjectId subscriber_id = uxr_object_id(0x01, UXR_SUBSCRIBER_ID);
const char* subscriber_xml = "";
uint16_t subscriber_req = uxr_buffer_create_subscriber_xml(&session, reliable_out,
→˓subscriber_id, participant_id, subscriber_xml, UXR_REPLACE);

The Publisher and Subscriber XML information is given when the DataWriter and DataReader are created.

5.5.7 DataWriters & DataReaders

Analogously to publishers and subscribers entities, we create the DataWriters and DataReaders entities. These entities
are in charge of sending and receiving the data. DataWriters are referred to as publishers, and DataReaders are referred
to as subscribers. The configuration of these DataReaders and DataWriters are contained in the XML.

uxrObjectId datawriter_id = uxr_object_id(0x01, UXR_DATAWRITER_ID);
const char* datawriter_xml = "<dds>"

"<data_writer>"
"<topic>"

"<kind>NO_KEY</kind>"
"<name>HelloWorldTopic</name>"
"<dataType>HelloWorld</dataType>"

"</topic>"
"</data_writer>"

"</dds>";

(continues on next page)

26 Chapter 5. Structure of the documentation

MicroXRCE-DDS Documentation, Release 2.1.1

(continued from previous page)

uint16_t datawriter_req = uxr_buffer_create_datawriter_xml(&session, reliable_out,
→˓datawriter_id, publisher_id, datawriter_xml, UXR_REPLACE);

uxrObjectId datareader_id = uxr_object_id(0x01, UXR_DATAREADER_ID);
const char* datareader_xml = "<dds>"

"<data_reader>"
"<topic>"

"<kind>NO_KEY</kind>"
"<name>HelloWorldTopic</name>"
"<dataType>HelloWorld</dataType>"

"</topic>"
"</data_reader>"

"</dds>";
uint16_t datareader_req = uxr_buffer_create_datareader_xml(&session, reliable_out,
→˓datareader_id, subscriber_id, datareader_xml, UXR_REPLACE);

5.5.8 Requester & Replier

There is another pair of coupled entities, the Requester and the Replier. These entities provide request-reply func-
tionality using the underlining publish-subscribe pattern. It is achieved through a mirror configuration between a
Requester and a Replier, that is, both entities contain a Publisher and a Subscriber, the Publisher of the Requester and
the Subscriber of the Replier are associated with the same Topic and vice versa. In that way, each time a Requester
publishes a request it will be received by the Replier, then the latter will generate a reply and publish it, and finally,
this reply will be received by the Requester.

The following code shows how to create a Requester and a Replier using the XML representation.

uxrObjectId requester_id = uxr_object_id(0x01, UXR_REQUESTER_ID);
const char* requester_xml = "<dds>"

"<requester profile_name=\"my_requester\""
"service_name=\"service_name\""
"request_type=\"request_type\""
"reply_type=\"reply_type\">"

"</requester>"
"</dds>";

uint16_t requester_req = uxr_buffer_create_requester_xml(&session, reliable_out,
→˓requester_id, participant_id, requester_xml, UXR_REPLACE);

replier_id = uxr_object_id(0x01, UXR_REPLIER_ID);
const char* replier_xml = "<dds>"

"<replier profile_name=\"my_replier\""
"service_name=\"service_name\""
"request_type=\"request_type\""
"reply_type=\"reply_type\">"

"</replier>"
"</dds>";

uint16_t replier_req = uxr_buffer_create_replier_xml(&session, reliable_out, replier_
→˓id, participant_id, replier_xml, UXR_REPLACE);

5.5. Getting started 27

MicroXRCE-DDS Documentation, Release 2.1.1

5.5.9 Agent response

In operations such as create a session, create entity or request data from the Agent, a status is sent from the Agent to
the Client indicating what happened.

For Create session or Delete session operations, the status value is stored into the session.info.
last_request_status. For the rest of the operations, the statuses are sent to the input reliable stream 0x80,
that is, the first input reliable stream created, with index 0.

The different status values that the Agent can send to the Client are the following (defined in uxr/client/core/
session/session_info.h):

UXR_STATUS_OK
UXR_STATUS_OK_MATCHED
UXR_STATUS_ERR_DDS_ERROR
UXR_STATUS_ERR_MISMATCH
UXR_STATUS_ERR_ALREADY_EXISTS
UXR_STATUS_ERR_DENIED
UXR_STATUS_ERR_UNKNOWN_REFERENCE
UXR_STATUS_ERR_INVALID_DATA
UXR_STATUS_ERR_INCOMPATIBLE
UXR_STATUS_ERR_RESOURCES
UXR_STATUS_NONE (never send, only used when the status is known)

The status can be handled by the on_status_callback callback (configured in uxr_set_status_callback
function) or by the run_session_until_all_status as we will see.

uint8_t status[6]; // we have 6 request to check.
uint16_t requests[6] = {participant_req, topic_req, publisher_req, subscriber_req,
→˓datawriter_req, datareader_req};
if(!uxr_run_session_until_all_status(&session, 1000, requests, status, 6))
{

printf("Error at create entities\n");
return 1;

}

The run_session functions are the main functions of the eProsima Micro XRCE-DDS Client library. They
perform several tasks: send the stream data to the Agent, listen to data from the Agent, call callbacks, and manage
the reliable connection. There are five variations of run_session function: - uxr_run_session_time
- uxr_run_session_until_timeout - uxr_run_session_until_confirmed_delivery -
uxr_run_session_until_all_status - uxr_run_session_until_one_status

Here we use the uxr_run_session_until_all_status variation that will perform these actions until all
statuses have been confirmed or the timeout has been reached. This function will return true in case all statuses were
OK. After calling this function, the status can be read from the status array previously declared.

5.5.10 Write Data

Once we have created a valid data writer entity, we can write data into the DDS Global Data Space using the writing
operation. For creating a message with data, first, we must decide which stream we want to use, and write that topic
in this stream.

HelloWorld topic = {count++, "Hello DDS world!"};

ucdrBuffer ub;
uint32_t topic_size = HelloWorld_size_of_topic(&topic, 0);

(continues on next page)

28 Chapter 5. Structure of the documentation

MicroXRCE-DDS Documentation, Release 2.1.1

(continued from previous page)

(void) uxr_prepare_output_stream(&session, reliable_out, datawriter_id, &ub, topic_
→˓size);
(void) HelloWorld_serialize_topic(&ub, &topic);

uxr_run_session_until_confirmed_delivery(&session, 1000);

HelloWorld_size_of_topic and HelloWorld_serialize_topic functions are automatically gener-
ated by eProsima Micro XRCE-DDS Gen from the IDL. The function uxr_prepare_output_stream re-
quests a writing for a topic of topic_size size into the reliable stream represented by reliable_out, with
a datawriter_id (correspond to the data writer entity used for sending the data in the DDS World). If the stream
is available and the topic fits in it, the function will initialize the ucdrBuffer structure ub. Once the ucdrBuffer
is prepared, the topic can be serialized into it. We are careless about uxr_prepare_output_stream return value
because the serialization only will occur if the ucdrBuffer is valid.

After calling the writing function, the topic has been serialized into the buffer, but it has not been sent
yet. To send the topic, it is necessary to call a run_session function. In this case, the function
uxr_run_session_until_confirmed_delivery is called, which will wait until the message was confirmed
or until the timeout has been reached.

5.5.11 Read Data

Once we have created a valid DataReader entity, we can read data from the DDS Global Data Space using the read
operation. This operation configures how the Agent will send the data to the Client. The current implementation sends
unlimited topics to the Client.

uxrDeliveryControl delivery_control = {0};
delivery_control.max_samples = UXR_MAX_SAMPLES_UNLIMITED;

uint16_t read_data_req = uxr_buffer_request_data(&session, reliable_out, datareader_
→˓id, reliable_in, &delivery_control);

To configure how the Agent will send the topic, we must set the input stream. In this case, we use the input reliable
stream previously defined. datareader_id corresponds with the DataDeader entity used for receiving the data.
The delivery_control parameter is optional, and allows specifying how the data will be delivered to the Client.
For the example purpose, we set it as unlimited, so any number HelloWorld topic will be delivered to the Client.

The run_session function will call the topic callback each time a topic will be received from the Agent.

void on_topic(uxrSession* session, uxrObjectId object_id, uint16_t request_id,
→˓uxrStreamId stream_id, struct ucdrBuffer* ub, uint16_t length, void* args)
{

(void) session; (void) object_id; (void) request_id; (void) stream_id; (void)
→˓length; (void) args;

HelloWorld topic;
HelloWorld_deserialize_topic(ub, &topic);

}

To know which kind of Topic has been received, we can use the object_id parameter or the request_id. The
id of the object_id corresponds to the DataReader that has read the Topic, so it can be useful to discretize among
different topics. The args argument corresponds to user-free-data, that has been given at uxr_set_status_callback
function.

5.5. Getting started 29

MicroXRCE-DDS Documentation, Release 2.1.1

5.5.12 Close the Client

To close a Client, we must perform two steps. First, we need to tell the Agent that the session is no longer available.
This is done sending the next message:

uxr_delete_session(&session);

After this, we can close the transport used by the session.

uxr_close_udp_transport(&transport);

5.5.13 Deployment example

This section is devoted to illustrate how to deploy a system using eProsima Micro XRCE-DDS in a real environment.
An example of this can be found in the examples/Deployment folder.

The tutorials above are based on all in one examples, that is, examples that create entities, publish or subscribe and
then delete the resources. One possible real purpose of this consists in differentiating the logic of creating entities
and the actions of publishing and subscribing. It can be done by creating two differents Clients, one in charge of
configuring the entities in the Agent, which runs once, only for creating the entities at compile-time, and other/s that
log(s) in the same session as the first Client (sharing the entities) and only publish(es) or subscrib(es) to data.

This allows creating Clients in a real scenario with the only purpose of sending and receiving data. The concept of
profiles allows building the Client library only with the chosen behavior (only to publish or to subscribe, for example).
See eProsima Micro XRCE-DDS Client for more information.

The diagram below shows an example of how to configure the environment using a configurator client.

Initial state

The environment contains two Agents (it’s perfectly possible to use only one Agent too), and two Clients, one for
publishing and another for subscribing.

30 Chapter 5. Structure of the documentation

MicroXRCE-DDS Documentation, Release 2.1.1

Publisher configuration

In this state a configurator client is connected to the Agent A with the client key that will be used by the future publisher
client (0xAABBCCDD). Once a session is logged in, the configurator client creates all the necessary entities for the
publisher client. This implies the creation of participant, topic, publisher, and datawriter entities. These entities have
a representation as DDS entities, and can be reached from the DDS world, that is, any subscriber DDS entity could
already be listening to topics if it matches with such publisher DDS entity through the DDS world.

Publisher

5.5. Getting started 31

MicroXRCE-DDS Documentation, Release 2.1.1

Then, the publisher client is connected to the Agent A. This Client logs in a session with its Client key (0xAABBC-
CDD).

At that moment, it can use all entities created related to this client key. Because all entities that it uses were successfully
created by the configurator client, the publisher client can immediately publish to DDS.

Subscriber configuration

Again, the configurator client connects and logs in, this time to Agent B, now with the subscriber’s key (0x11223344).
In this case, the entities that the configurator client creates are a participant, a topic, a subscriber, and a datareader.
The entities created by the configuraton client will be available until the session is deleted.

32 Chapter 5. Structure of the documentation

MicroXRCE-DDS Documentation, Release 2.1.1

Subscriber

Once the subscriber is configured, the subscriber client logs in the Agent B. Since all of its entities have been created
previously, it only needs to configure the read after the login. Once the data request message has been sent, the
subscriber will receive the topics from the publisher through the DDS world.

5.6 Shapes Demo

ShapesDemo is an interactive example for testing how eProsima Fast RTPS working in the DDS Global Data Space.
Because eProsima Micro XRCE-DDS aims to connect an XRCE Client to the DDS World, in this example, we will
create a Client which will interact with the Shapes Demo. It can be found at examples/uxr/client/ShapeDemoClient
inside of the installation directory. This interactive Client waits for user input indicating commands to execute.

The available commands are the following:

create_session Creates a Session, if exists, reuse it.

create_participant <participant id>: Creates a Participant on the current session.

create_topic <topic id> <participant id>: Registers a Topic using <participant id> participant.

create_publisher <publisher id> <participant id>: Creates a Publisher on <participant id> participant.

create_subscriber <subscriber id> <participant id>: Creates a Subscriber on <participant id> participant.

create_datawriter <datawriter id> <publisher id>: Creates a DataWriter on the publisher <publisher id>.

create_datareader <datareader id> <subscriber id>: Creates a DataReader on the subscriber <subscriber id>.

write_data <datawriter id> <stream id> [<x> <y> <size> <color>]: Writes data into a <stream id> using <data
writer id> DataWriter.

request_data <datareader id> <stream id> <samples>: Reads <sample> topics from a <stream id> using
<datareader id> DataReader,

cancel_data <datareader id>: Cancels any previous request data of <datareader id> DataReader.

delete <id_prefix> <type>: Removes object with <id prefix> and <type>.

5.6. Shapes Demo 33

https://github.com/eProsima/ShapesDemo

MicroXRCE-DDS Documentation, Release 2.1.1

stream, default_output_stream <stream_id>: Changes the default output stream for all messages except of write
data. <stream_id> can be 1-127 for best effort and 128-255 for reliable. The streams must be initially configured.

exit: Closes session and exit.

tree, entity_tree <id>: Creates the necessary entities for a complete publisher and subscriber. All entities will have
the same <id> as id.

h, help: Shows this message.

For example, to create a publisher Client that sends a square Topic in reliable mode, run the following commands:

> create_session
> create_participant 1
> create_topic 1 1
> create_publisher 1 1
> create_datawriter 1 1
> write_data 1 128 200 200 40 BLUE

This Client will publish a topic in the reliable mode that will have color BLUE, x coordinate 200, y coordinate 200,
and size 40.

In case of a subscriber Client that receives square topics in a reliable mode, run the following:

> create_session
> create_participant 1
> create_topic 1 1
> create_subscriber 1 1
> create_datareader 1 1
> request_data 1 128 5

This Client will receive 5 topics in reliable mode.

To create the entities tree easily, run the command entity_tree <id>. For example, the following command
creates the necessary entities for publishing and subscribing data with id 3:

> entity_tree 3
create_participant 3
create_topic 3 3
create_publisher 3 3
create_subscriber 3 3
create_datawriter 3 3
create_datareader 3 3

To modify the output default stream, change it with stream <id>.

The maximum available streams correspond to the CONFIG_MAX_OUTPUT_BEST_EFFORT_STREAMS and
CONFIG_MAX_OUTPUT_RELIABLE_STREAMS properties as CMake arguments.

> stream 1

Now the messages will be sent in best-effort mode.

34 Chapter 5. Structure of the documentation

MicroXRCE-DDS Documentation, Release 2.1.1

5.7 eProsima Micro XRCE-DDS Client

In eProsima Micro XRCE-DDS, a Client can communicate with the DDS Network as any other DDS actor could
do. Clients can either publish and subscribe to data Topics in the DDS Global Data Space, or act as a client/service
application following a request-reply pattern.

This section explains how the Client-Agent communication happens through streams that can be either best-effort or
reliable. After this, it is explained how users can configure Clients applications and the communication with the Agent
via sets of CMake flags (-D<parameter>=<value>) that enable/disable profiles and/or allow customize the size
of several parameters. Finally, a table is presented to explain the creation mode options of the Clients on the Agent’s
side. The section is organized as follows:

• Streams

• Profiles

• Configurations

• Read Access Delivery Control

• Creation Mode: Client

• Creation Policy Table

eProsima Micro XRCE-DDS provides the user with a C API to create eProsima Micro XRCE-DDS Clients applications.
Find the full Client API in the dedicated page.

5.7.1 Streams

The Client-Agent communication is performed by streams. The streams can be seen as communication channels.
There are two types of streams: best-effort and reliable. The user can define a maximum of 127 best-effort streams
and 128 reliable streams, but for the majority of purposes, only one stream in either best-effort or reliable mode is
used.

Best-effort streams Best-effort streams send and receive the data leaving the reliability to the transport layer. As a
result, they consume fewer resources than reliable streams. Also, no history is stored and so the message size
sent or received by a best-effort stream must be less or equal than the MTU defined in the transport layer.

Reliable streams Reliable streams perform the communication without loss, regardless of the transport layer used,
and allow for message fragmentation to send and receive messages longer than the MTU.

To avoid loss of data, reliable streams use additional messages to confirm the delivery. Moreover, reliable
streams have a history associated, used to store messages that can not be processed due to issues such as delivery
order or incomplete fragments or messages that can not be confirmed yet. The size of the history can be tailored
to fit the specific requirements of the application. The size of the stream corresponds to the MTU defined in the
transport layer times the history.

If the history is full:

• The messages written to the Agent will be discarded until the history is freed and has space to store the
new messages.

• The messages received from the agent will be discarded. The library will try to recover the discarded
messages requesting them to the agent (increasing the bandwidth consumption in the process).

Summarizing:

• A short history causes more messages to be discarded, increasing the data traffic because they need to be
sent again. At the same time, it consumes less memory.

• A long history will reduce the traffic of confirmation messages when the loss rate is high.

5.7. eProsima Micro XRCE-DDS Client 35

MicroXRCE-DDS Documentation, Release 2.1.1

This internal management of the communication implies that a reliable stream is more expensive than a best-
effort stream, in both memory and bandwidth, but it is possible to play with these values using the history
size.

The streams are probably the highest memory load part of the application. For that, the choice of a right configuration
for the application is highly recommendable, especially when the target is a limited resource device. The Memory
optimization page explains more in detail how to achieve this.

5.7.2 Profiles

The Client library follows a profile concept that enables to choose, add or remove some features at compile-time, thus
allowing to customize the Client library size, if there are features that are not used.

The profiles can be chosen using CMake arguments and start with the prefix UCLIENT_PROFILE
(-D<parameter>=<value>) before the compilation.

By means of these profiles, the user can choose which transport to use, and whether to enable or not the discovery and
framing functionalities.

Definition Description Val-
ues

De-
fault

UCLIENT_PROFILE_UDP Enables or disables the possibility to connect with the Agent by
UDP.

<bool>ON

UCLIENT_PROFILE_TCP Enables or disables the possibility to connect with the Agent by
TCP.

<bool>ON

UCLIENT_PROFILE_SERIALEnables or disables the possibility to connect with the Agent by
Serial.

<bool>ON

UCLIENT_PROFILE_CAN Enables or disables the possibility to connect with the Agent by
CAN FD.

<bool>OFF

UCLIENT_PROFILE_CUSTOM_TRANSPORTEnables or disables the possibility to connect with the Agent by
Custom Transport.

<bool>ON

UCLIENT_PROFILE_DISCOVERYEnables or disables the functions of the discovery feature (cur-
rently, only for POSIX).

<bool>ON

UCLIENT_PROFILE_STREAM_FRAMINGEnables or disables the stream framing protocol. <bool>ON
UCLIENT_PROFILE_MULTITHREADEnables or disables the multithread locking operation of the li-

brary.
<bool>ON

UCLIENT_PROFILE_SHARED_MEMORYEnables or disables a basic local memory transport operation be-
tween entities in the same application.

<bool>ON

Transport profiles

The implementation of the transport depends on the platform. As mentioned in the Introductory page, the Client is
supported by the following platforms: Linux, Windows, FreeRTOS, Zephyr and NuttX. Linux and all three RTOSes
present a POSIX-compliant API to some degree. Find below a table summarizing the compatibility of each these
Operating Systems, according to their POSIX compliance, with the transports supported by the eProsima Micro XRCE-
DDS Client.

The table below shows the current implementation.

36 Chapter 5. Structure of the documentation

MicroXRCE-DDS Documentation, Release 2.1.1

Transport POSIX Windows
UDP X X
TCP X X
Serial X
CAN FD X
Custom X X

Each available transport can be activated or desactivated via the opportune CMake flag:
UCLIENT_PROFILE_<transport>, where <transport> = UDP, TCP, SERIAL, CAN, or
UCLIENT_PROFILE_CUSTOM_TRANSPORT in the case Custom transport is to be used.

eProsima Micro XRCE-DDS provides a user API that allows interfacing with the lowest level transport layer at runtime.
In this way, a user is enabled to implement its own transports based on one of the two communication approaches:
stream-oriented or packet-oriented. By means of this API, a user can set four callbacks which will be in charge of
opening and closing the transport, and writing and reading from it. This custom transport API is enabled by setting the
CMake argument UCLIENT_PROFILE_CUSTOM_TRANSPORT=<bool> to true. In the case that stream-oriented
transport is used UCLIENT_PROFILE_STREAM_FRAMING=<bool> should also be enabled.

Find out more in the Transport section of the Client API.

Discovery profile

The discovery profile allows discovering Agents in the network by UDP. The reachable Agents will respond to the
discovery call sending information about themselves, as their IP and port. This can happen in two ways: multicast or
unicast. The discovery phase can be performed before the uxr_create_session call to determine the Agent to connect
with. The declaration of these functions can be found in uxr/client/profile/discovery/discovery.h.
This profile is enabled when the UCLIENT_DISCOVERY_PROFILE is ON.

Find out more in the dedicated section of the API.

Note: This feature is only available on Linux.

Framing profile

The framing profile enables HDLC Framing for using stream-oriented transports such as Serial transports or Custom
transports that require framing.

Multithread profile

The multithread profile enables the thread-safe operation with the Micro XRCE-DDS Client library. It lockguards all
the critical sections of the API and allows the usage from concurrent tasks.

5.7. eProsima Micro XRCE-DDS Client 37

MicroXRCE-DDS Documentation, Release 2.1.1

Shared memory profile

The multithread profile enables a simple intraprocess communication. This profile is intended to be used whithin
devices without memory protection units where all tasks or processes have access to the whole memory space.

5.7.3 Configurations

There are several definitions for configuring and building the Client library at compile-time. These definitions allow
users to create a version of the library according to their requirements. These parameters can be selected as CMake
flags (-D<parameter>=<value>) before the compilation. By means of these flags, the user can change the default
value of all the parameters listed below.

38 Chapter 5. Structure of the documentation

MicroXRCE-DDS Documentation, Release 2.1.1

Definition Description Val-
ues

De-
fault

UCLIENT_MAX_OUTPUT_BEST_EFFORT_STREAMSConfigures the maximum output best-effort streams that a session could
have. The calls to the uxr_create_output_best_effort_stream
function for a session must be less than or equal to this value.

<number>1

UCLIENT_MAX_OUTPUT_RELIABLE_STREAMSConfigures the maximum output reliable streams that a session could have.
The calls to the uxr_create_output_realiable_stream function
for a session must be less than or equal to this value.

<number>1

UCLIENT_MAX_INPUT_BEST_EFFORT_STREAMSConfigures the maximum input best-effort streams that a session could have.
The calls to the uxr_create_input_best_effort_stream func-
tion for a session must be less than or equal to this value.

<number>1

UCLIENT_MAX_INPUT_RELIABLE_STREAMSConfigures the maximum input reliable streams that a session could have.
The calls to the uxr_create_input_realiable_stream function
for a session must be less than or equal to this value.

<number>1

UCLIENT_MAX_SESSION_CONNECTION_ATTEMPTSThis value indicates the number of attempts that create_session and
delete_session will perform until receiving a status message.

<number>10

UCLIENT_MIN_SESSION_CONNECTION_INTERVALThis value represents how long it will take to send a new
create_session or delete_session if the first attempt was
left answered.

<number>1000

UCLIENT_MIN_HEARTBEAT_TIME_INTERVALIn a reliable communication, this value represents how long it will take for
the first heartbeat to be sent. The wait time for the next heartbeat will be
double. It is measured in milliseconds.

<number>100

UCLIENT_BIG_ENDIANNESSThis value must correspond to the memory endianness of the device in which
the Client is running. OFF implies that the machine is little-endian and ON
implies big-endian.

<bool>OFF

UCLIENT_UDP_TRANSPORT_MTUThis value corresponds to the Maximum Transmission Unit (MTU) that can
be sent and/or received by UDP. It is measured in bytes and, internally, it
corresponds to the creation of a buffer this size.

<number>512

UCLIENT_TCP_TRANSPORT_MTUThis value corresponds to the Maximum Transmission Unit (MTU) that can
be sent and/or received by TCP. It is measured in bytes and, internally, it
corresponds to the creation of a buffer this size.

<number>512

UCLIENT_SERIAL_TRANSPORT_MTUThis value corresponds to the Maximum Transmission Unit (MTU) that can
be sent and/or received by Serial. It is measured in bytes and, internally, it
corresponds to the creation of a buffer this size.

<number>512

UCLIENT_CUSTOM_TRANSPORT_MTUThis value corresponds to the Maximum Transmission Unit (MTU) that can
be sent and/or received by Custom transport. It is measured in bytes and,
internally, it corresponds to the creation of a buffer this size.

<number>512

UCLIENT_SHARED_MEMORY_MAX_ENTITIESThis value corresponds to the Max number of entities involved in shared
memory.

<number>4

UCLIENT_SHARED_MEMORY_STATIC_MEM_SIZEThis value corresponds to the Max number data buffers stored in shared
memory.

<number>10

UCLIENT_HARD_LIVELINESS_CHECKEnables Micro XRCE-DDS Client hard liveliness check. <bool>OFF
UCLIENT_HARD_LIVELINESS_CHECK_TIMEOUTSets Micro XRCE-DDS Client hard liveliness check timeout in milliseconds.

Maximum value is 999999 ms.
<number>10000

Note: The MTU of the CAN transport is fixed to 64 bytes, which is the maximum payload supported by CAN FD
frames. Take this into account to calculate the size of the streams for the requirements of the application.

5.7. eProsima Micro XRCE-DDS Client 39

MicroXRCE-DDS Documentation, Release 2.1.1

5.7.4 Read Access Delivery Control

The Read Access Delivery Control handles the read operation from a datareader previously created on the Agent to
fetch data from the middleware. It comes with an optional control argument, that allows the Client setting the
following parameters:

• max_bytes_per_second: Maximum rate at which data messages may be returned, measured in bytes per
secpond.

• max_elapsed_time: Maximum amount of time that can be spent by the Agent in delivering the topic,
measured in seconds.

• max_samples: Maximum number of topics that the Agent can send to the Client.

• min_pace_period: Minimum elapsed time between two topics deliveries, measured in milliseconds,.

For more information, consult the Read access of the Client API.

5.7.5 Creation Mode: Client

The creation of Entities on the Agent which can act on behalf of the Clients in the DDS world can be done in three
ways: by XML, by reference or by binary. In this section, we explain these three creation modes and provide guidance
on their usage.

XML In the XML case, when creating the entities in the Client application, the user must provide each entity with
a const char* <entity>_xml parameter containing a string of text with XML syntax, matching the DDS rules for
creating a DDS entity with an XML profile, as explained here.

For instance, when creating a participant or a topic, the profiles shall look as follows:

<!-- PARTICIPANT -->
const char* participant_xml = "<dds>"

"<participant>"
"<rtps>"

"<name>[PARTICIPANT NAME]</name>"
"</rtps>"

"</participant>"
"</dds>";

<!-- TOPIC -->
const char* topic_xml = "<dds>"

"<topic>"
"<name>[TOPIC NAME]</name>"
"<dataType>[TOPIC TYPE]</dataType>"

"</topic>"
"</dds>"

As detailed in the Getting started section, participants, topics, datawriters, datareaders, requesters and repliers
work similarly. Publishers and subscribers, instead, inherit their XML fields from their associated dataWriters
and dataReaders.

Creation by XML has the advantage of being configurable direclty within the Client application, but comes with
the drawback of offering a very limited set of options as regards the QoS with which the DDS entities profiles
can be configured. Indeed, only best-effort or reliable communication streams can be set with this creation
mode. In many cases, these QoS configurations alone may not be enough. For these cases, eProsima Micro
XRCE-DDS allows the users to use the creation by references mode.

References Creation by references happens by feeding the Agent with an XML profile containing a string of text
similar to the snippets provided above, with a label associated to it. Therefore, when creating an entity, the

40 Chapter 5. Structure of the documentation

https://fast-dds.docs.eprosima.com/en/latest/fastdds/xml_configuration/xml_configuration.html

MicroXRCE-DDS Documentation, Release 2.1.1

Client will only need to provide a reference to this label in spite of the complete XML profile. This creation
mode comes with two advantages:

• It consumes less Client memory, making the application more lightweight.

• It allows the Clients to write their own XML QoS and run the Agent with a custom configuration which
can benefit of the full set of QoS available in DDS.

For instance, when creating a participant or a topic, the profiles shall look as follows:

<!-- PARTICIPANT -->
const char* participant_ref = "participant_label";

<!-- TOPIC -->
const char* topic_ref = "topic_label"

Binary

Creation by binary provides a comprehensive API in the Micro XRCE-DDS Client library that can be
used to generate and send over the XRCE-DDS middleware binary representations of the entities that are
being created. This creation mode comes with two advantages:

• It consumes less Client memory than XML mode, making the application more lightweight.

• It provides much more flexibility than the REF mode in the client side.

For instance, when creating a participant or a topic, the profiles shall look as follows:

uxrQoS_t qos = {
.reliability = UXR_RELIABILITY_RELIABLE, .durability = UXR_DURABILITY_

→˓TRANSIENT_LOCAL,
.history = UXR_HISTORY_KEEP_LAST, .depth = 0

};
uxr_buffer_create_topic_bin(&session, reliable_out, topic_id, participant_id,
→˓ "ExampleTopic", "ExampleType", UXR_REPLACE);
uxr_buffer_create_datawriter_bin(&session, reliable_out, datawriter_id,
→˓publisher_id, topic_id, qos, UXR_REPLACE);

Find more information in the Creation Mode: Agent section in the eProsima Micro XRCE-DDS Agent page.

5.7. eProsima Micro XRCE-DDS Client 41

MicroXRCE-DDS Documentation, Release 2.1.1

5.7.6 Creation Policy Table

The following table summarizes the behaviour of the Agent under entity creation request.

Creation flags Entity exists Result
Don’t care NO Entity is created.
0 YES No action is taken, and

UXR_STATUS_ERR_ALREADY_EXITS
is returned.

UXR_REPLACE YES Existing entity is deleted, re-
quested entity is created and
UXR_STATUS_OK is returned.

UXR_REUSE YES

If entity matches no action is taken
and UXR_STATUS_OK_MATCHED
is returned.
If entity does not match any action
is taken and
UXR_STATUS_ERR_MISMATCH
is returned.

UXR_REUSE | UXR_REPLACE YES

If entity matches no action is taken
and UXR_STATUS_OK_MATCHED
is returned.
If entity does not match, exiting
entity is deleted, requested entity is
created and UXR_STATUS_OK is
returned.

5.8 eProsima Micro XRCE-DDS Agent

The eProsima Micro XRCE-DDS Agent acts as a server between the DDS Network and eProsima Micro XRCE-DDS
Clients applications. The Agents receive messages containing operations from the Clients, and keep track of the Clients
and of the entities they create. These entities are used by the Agents to interact with the DDS Global Data Space on
behalf of the Clients.

The communication between a Client and an Agent currently supports UDP, TCP, Serial, CAN FD, and Custom trans-
ports, depending on the peripherals and communication technologies offered by the platforms. A section dedicated to
the configuration and use of the Custom Transport can be found at the end of this page.

While running, the Agent attends any received requests from the Clients and answers back with the result of those
requests.

This section is organized as follow:

• Agent CLI

• Custom transport

• Configuration

• Creation Mode: Agent

42 Chapter 5. Structure of the documentation

MicroXRCE-DDS Documentation, Release 2.1.1

• Middleware Abstraction Layer

5.8.1 Agent CLI

To run the Agent, first of all build it as indicated in the Installation page. Once it is built successfully, launch it by
executing one of the following commands:

UDP transport The communication via UDP can be executed using two modes, IPv4 and IPv6; and configured as
follows:

$./MicroXRCEAgent [udp4 | udp6] [OPTIONS]

Options:
-h,--help Print the help message.
-p,--port UINT REQUIRED Select the IP port.
-m,--middleware TEXT in {ced,rtps,dds}=dds Select the kind of middleware

→˓among the supported ones. By default, it will be FastDDS.
-r,--refs FILEPATH Load a references file from the

→˓given path.
-v,--verbose UINT in {0,1,2,3,4,5,6}=4 Select log level from none (0) to

→˓full verbosity (6).
-d,--discovery UINT=7400 Activate the Discovery server. If

→˓no port is specified, 7400 will be used.
--p2p UINT Activate the P2P profile, using

→˓the given port.

TCP transport The communication via TCP can be executed using two modes, IPv4 and IPv6; and configured as
follows:

$./MicroXRCEAgent [tcp4 | tcp6] [OPTIONS]

Options:
-h,--help Print the help message.
-p,--port UINT REQUIRED Select the IP port.
-m,--middleware TEXT in {ced,rtps,dds}=dds Select the kind of middleware

→˓among the supported ones. By default, it will be FastDDS.
-r,--refs FILEPATH Load a references file from the

→˓given path.
-v,--verbose UINT in {0,1,2,3,4,5,6}=4 Select log level from none (0) to

→˓full verbosity (6).
-d,--discovery UINT=7400 Activate the Discovery server. If

→˓no port is specified, 7400 will be used.
--p2p UINT Activate the P2P profile, using

→˓the given port.

Communication via Serial transport (only Linux) The communication via Serial transport can be executed and
configured as follows:

$./MicroXRCEAgent serial [OPTIONS]

Options:
-h,--help Print the help message.
-D,--dev FILE REQUIRED Specify the serial device.
-f,--file FILE REQUIRED Specify a text file with the

→˓serial device name.
-b,--baudrate TEXT=115200 Select the baudrate.
-m,--middleware TEXT in {ced,rtps,dds}=dds Select the kind of middleware

→˓among the supported ones. By default, it will be FastDDS. (continues on next page)

5.8. eProsima Micro XRCE-DDS Agent 43

MicroXRCE-DDS Documentation, Release 2.1.1

(continued from previous page)

-r,--refs FILEPATH Load a references file from the
→˓given path.
-v,--verbose UINT in {0,1,2,3,4,5,6}=4 Select log level from none (0) to

→˓full verbosity (6).

Note: The Agent will check and wait for the proper availability of the Serial port to start the connection. Its expected
to start the transport with a disconnected Serial port.

Communication via Multiserial transport (only Linux) This transport allows multiple serial connections on the
same Agent instance. The communication via Multiserial transport can be executed and configured as follows:

$./MicroXRCEAgent multiserial [OPTIONS]

Options:
-h,--help Print the help message.
-D,--devs FILE REQUIRED Specify the serial devices.
-f,--file FILE REQUIRED Specify a text file with one

→˓serial device per line.
-b,--baudrate TEXT=115200 Select the baudrate.
-m,--middleware TEXT in {ced,rtps,dds}=dds Select the kind of middleware

→˓among the supported ones. By default, it will be FastDDS.
-r,--refs FILEPATH Load a references file from the

→˓given path.
-v,--verbose UINT in {0,1,2,3,4,5,6}=4 Select log level from none (0) to

→˓full verbosity (6).

Note: The Agent will check and wait for the proper availability of each Serial port to start the connection. Its expected
to start the transport with multiple disconnected ports.

Communication via CAN FD transport (only Linux) The communication via CAN FD transport can be executed
and configured as follows:

$./MicroXRCEAgent canfd [OPTIONS]

Options:
-h,--help Print the help message.
-D,--dev INTERFACE REQUIRED Specify the CAN interface.
-m,--middleware TEXT in {ced,rtps,dds}=dds Select the kind of middleware

→˓among the supported ones. By default, it will be FastDDS.
-r,--refs FILEPATH Load a references file from the

→˓given path.
-v,--verbose UINT in {0,1,2,3,4,5,6}=4 Select log level from none (0) to

→˓full verbosity (6).

Note: The used interface must support CAN FD frames with a maximum payload of 64 bytes. The agent will use the
received message identifiers from each client on its output frames.

Communication via pseudo terminal (only Linux) The communication via pseudo serial can be executed and con-
figured as follow:

44 Chapter 5. Structure of the documentation

MicroXRCE-DDS Documentation, Release 2.1.1

$./MicroXRCEAgent pseudoterminal [OPTIONS]

Options:
-h,--help Print the help message.
-D,--dev FILE REQUIRED Specify the pseudo serial device.
-b,--baudrate TEXT=115200 Select the baudrate.
-m,--middleware TEXT in {ced,rtps,dds}=dds Select the kind of middleware

→˓among the supported ones. By default, it will be FastDDS.
-r,--refs FILEPATH Load a references file from the

→˓given path.
-v,--verbose UINT in {0,1,2,3,4,5,6}=4 Select log level from none (0) to

→˓full verbosity (6).

• The reference file shall be composed by a set of Fast DDS profiles following the XML syntax described in the
eProsima Fast DDS documentation. The profile_name attribute of each profile represents a reference to an
XRCE entity, so that it can be used by the Clients to create entities by reference.

• The -b,--baudrate <baudrate> options sets the baud rate of the communication. It can take the fol-
lowing values: 0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 240, 4800, 9600, 19200, 38400, 57600,
115200 (default), 230400, 460800, 500000, 576000, 921600, 1000000, 1152000, 1500000, 2000000, 2500000,
3000000, 3500000 or 4000000 bauds.

• The -v,--verbose <level[0-6]> option sets log level from less to more verbose, where level 0 corre-
sponds to the logger being off. Then, from 1 to 6, the following logging levels are activated: critical, error,
warning, info, debug and trace.

• The option -m,--middleware <middleware-impl> sets the middleware implementation to use. There
are three: RTPS (based on eProsima Fast RTPS), DDS (specified by the XRCE standard and using Fast DDS)
and Centralized (topic are managed by the Agent similarly to MQTT). More information about the supported
middlewares can be found here.

• The --p2p <port> option enables P2P communication, this option is only available on network transports.
Centralized middleware is necessary for this option.

5.8.2 Custom transport

If none of the transports specified above is suitable for the target application, users can easily create an instance of a
Micro XRCE-DDS Agent, together with a custom transport implementation.

For this purpose, the eprosima::uxr::CustomAgent class was developed. It follows the policy of giving users
function signatures to implement, which hide as much as possible the underneath implementation details of the Agent.
Thus, this methods provide common parameters used when implementing a receive/send message method, such as an
octet pointer to a raw data buffer, buffer/message length, timeout, and so on.

More details on how to implement a custom transport can be found in the Custom Transport Agent’s section of this
documentation.

5.8. eProsima Micro XRCE-DDS Agent 45

https://fast-dds.docs.eprosima.com/en/latest/fastdds/xml_configuration/xml_configuration.html
https://fast-dds.docs.eprosima.com/en/latest/

MicroXRCE-DDS Documentation, Release 2.1.1

5.8.3 Configuration

There are several parameters which can be set at compile-time to configure the eProsima Micro XRCE-DDS Agent.
These parameters can be selected as CMake flags (-D<parameter>=<value>) before the compilation. The fol-
lowing is a table listing these parameters and the functionalities they carry out:

Definition Description Val-
ues

De-
fault

UAGENT_CONFIG_RELIABLE_STREAM_DEPTHSpecifies the history of the reliable streams. <number>16
UAGENT_CONFIG_BEST_EFFORT_STREAM_DEPTHSpecifies the history of the best-effort streams. <number>16
UAGENT_CONFIG_HEARTBEAT_PERIODSpecifies the HEARTBEAT message period in millisecond. <number>200
UAGENT_CONFIG_TCP_MAX_CONNECTIONSSpecifies the maximum number of connections that the Agent

can manage.
<number>100

UAGENT_CONFIG_TCP_MAX_BACKLOG_CONNECTIONSSpecifies the maximum number of incoming connections
(pending to be established) that the Agent can manage.

<number>100

UAGENT_CONFIG_SERVER_QUEUE_MAX_SIZEMaximum server’s queues size. <number>32000
UAGENT_CONFIG_CLIENT_DEAD_TIMEClient dead time in milliseconds. <number>30000
UAGENT_SERVER_BUFFER_SIZEServer buffer size. <number>65535

5.8.4 Creation Mode: Agent

As explained in the Creation Mode: Client section in the eProsima Micro XRCE-DDS Client page, the creation of
Entities on the Agent can be done in two ways: by XML, or by reference. While the creation by XML is configured
directly on the Client, creation by reference must be configured on the Agent, via an agent.refs file which must
be loaded as a CLI parameter by using the -r option followed by the path to the reference file. If a Custom trasnport
is used, the agent.refs file must be fed to the :ref:`load_config_file <load_config_file>` function defined
in the Agent.

The agent.refs file should define the desired profiles as follows:

<profiles>
<participant profile_name="default_xrce_participant">

<rtps>
<name>default_xrce_participant</name>

</rtps>
</participant>
<data_writer profile_name="shapetype_data_writer">

<topic>
<kind>WITH_KEY</kind>
<name>Square</name>
<dataType>ShapeType</dataType>

</topic>
</data_writer>
<data_reader profile_name="shapetype_data_reader">

<topic>
<kind>WITH_KEY</kind>
<name>Square</name>
<dataType>ShapeType</dataType>

</topic>
</data_reader>
<topic profile_name="shapetype_topic">

<kind>WITH_KEY</kind>
<name>Square</name>
<dataType>ShapeType</dataType>

(continues on next page)

46 Chapter 5. Structure of the documentation

MicroXRCE-DDS Documentation, Release 2.1.1

(continued from previous page)

</topic>
<requester profile_name="shapetype_requester"

service_name="shapetype_service"
request_type="request_type"
reply_type="reply_type">

</requester>
<replier profile_name="shapetype_replier"

service_name="shapetype_service"
request_type="request_type"
reply_type="reply_type">

</replier>
</profiles>

In the reference file, each entity must be associated to a profile_name which serves as a label to which the Client
can refere when creating entities.

5.8.5 Middleware Abstraction Layer

The Middleware Abstraction Layer is an interface whose purpose is to isolate the XRCE core from the middleware,
as well as to allow providing multiple middleware implementations. The interface has a set of pure virtual functions,
which are called by the ProxyClient each time a Client requests to create/delete an entity or to write/read data.

5.8. eProsima Micro XRCE-DDS Agent 47

MicroXRCE-DDS Documentation, Release 2.1.1

ProxyClient

bool create_<entity>()
bool delete_object()

Middleware

bool create_<entity>_by_ref() = 0
bool create_<entity>_by_xml() = 0
bool delete_<entity>() = 0

bool write_data() = 0
bool read_data() = 0

bool match_<entity>_by_ref() = 0
bool match_<entity>_by_xml() = 0

FastMiddleware

"Fast RTPS implementation"

CedMiddleware

"Centralized implementation"

For the moment, the Agent counts with two active middleware implementations (FastDDSMiddleware and CedMid-
dleware) and another one that is currently deprecated (FastMiddleware).

FastDDSMiddleware

The FastDDSMiddleware uses eProsima Fast DDS, a C++ implementation of the DDS standard.

This middleware allows the Clients to produce and consume data in the DDS Global Data Space, and as such also in
the ROS 2 ecosystem. The Agent has the behaviour described in the DDS-XRCE standard, that is, for each DDS-XRCE
entity a DDS proxy entity is created, and the writing/reading action produces a publishing/subscribing operation in the
DDS world.

48 Chapter 5. Structure of the documentation

MicroXRCE-DDS Documentation, Release 2.1.1

CedMiddleware

The CedMiddleware (Centralized Middleware) works similar to MQTT, that is, the Agent acts as a broker but has no
output to the DDS world. It:

• Accepts connection from the Clients,

• Accepts messages published by the Clients,

• Processes subscribe and unsubscribe requests from the Clients,

• Forwards messages that match the Clients’ subscriptions,

• Closes the connection opened by the Clients.

By default, this middleware does not allow communication between Clients connected to different Agents, but the P2P
communication enables this feature.

FastMiddleware

The FastMiddleware uses eProsima Fast RTPS, a C++ implementation of the RTPS (Real Time Publish Subscribe)
protocol. This middleware allows Client to produce and consume data in the DDS Global Data Space, and as such
also in the ROS 2 ecosystem. As in the case of the FastDDSMiddleware, the Agent has the behaviour described in the
DDS-XRCE standard, that is, for each DDS-XRCE entity a DDS proxy entity is created, and the writing/reading action
produces a publishing/subscribing operation in the DDS world.

Warning: This implementation is deprecated at the moment.

How to add a middleware

Adding a new middleware implementation is quite simple, if the steps below are followed:

1. Create a class that implement the Middleware class (see inclue/uxr/agent/middleware/fast/FastMiddleware.hpp
and src/cpp/middleware/fast.cpp as examples).

2. Add a enum member protected by defines in Middleware::Kind at in-
clude/uxr/agent/middleware/Middleware.hpp.

3. Add a case in the switch of the ProxyClient constructor at src/cpp/client/ProxyClient.cpp.

4. In CMakeLists.txt add an option similar to UAGENT_FAST_PROFILE and add the source to SRCS variable.

5. In include/uxr/agent/config.hpp.in add a #cmakedefine with the name of the CMake option.

6. Finally, add the CLI middleware option in MiddlewareOpt constructor at include/uxr/agent/utils/CLI.hpp.

5.9 API

This section provides the detailed information for programming Client and Agent applications with the API provided
by eProsima Micro XRCE-DDS.

5.9. API 49

MicroXRCE-DDS Documentation, Release 2.1.1

5.9.1 Client API

eProsima Micro XRCE-DDS provides the user with a C API to create eProsima Micro XRCE-DDS Clients applications.
All functions needed to set up the Client can be found in the client.h header. That is the only header the user needs
to include.

In this section, we provide the full API for the Micro XRCE-DDS Client. As a nomenclature, this API uses the uxr_
prefix in all of its public functions and the uxr prefix in the types. In constants values, the UXR_ prefix is used. The
functions belonging to the public interface of the library are only those with the tag UXRDDLAPI in their declarations.

The functions are grouped as follows:

• Session

• Create entities by XML

• Create entities by reference

• Create entities by binary

• Create entities common profile

• Read access

• Write access profile

• Discovery profile

• Topic serialization

• General utilities

• Transport

Session

These functions are available even if no profile has been enabled. The declaration of these functions can be found in
uxr/client/core/session/session.h.

void uxr_init_session(uxrSession* session, uxrCommunication* comm, uint32_t key);

Initializes a session structure. Once this function is called, a create_session call can be performed.

session Session structure where to manage the session data.

comm Communication used for connecting to the Agent. All different transports have a common attribute
uxrCommunication. This parameter can not be shared between active sessions.

key The key identifier of the Client. All Clients connected to an Agent must have a different key.

void uxr_set_status_callback(uxrSession* session, uxrOnStatusFunc on_status_func,
→˓void* args);

Assigns the callback for the Agent status messages.

session Session structure previously initialized.

on_status_func Function callback that is called when a valid status message comes from the Agent.

args User pointer data. The args are provided to the on_status_func function.

50 Chapter 5. Structure of the documentation

MicroXRCE-DDS Documentation, Release 2.1.1

The function signature for the on_status_func callback is:

typedef void (*uxrOnStatusFunc) (struct uxrSession* session, uxrObjectId object_id,
→˓uint16_t request_id,

uint8_t status, void* args);

session Session structure related to the status.

object_id The identifier of the entity related to the status.

request_id Status request id.

status Status value.

args User pointer data.

void uxr_set_topic_callback(uxrSession* session, uxrOnTopicFunc on_topic_func, void*
→˓args);

Assigns the callback for topics. The topics are received only if a request_data function has been called.

session Session structure previously initialized.

on_status_func Function callback that is called when a valid data message comes from the Agent.

args User pointer data. The args are provided to the on_topic_func function.

The function signature for the on_topic_func callback is:

typedef void (*uxrOnTopicFunc) (struct uxrSession* session, uxrObjectId object_id,
→˓uint16_t request_id, uxrStreamId stream_id,

struct ucdrBuffer* ub, uint16_t length, void* args);

session Session structure related to the topic.

object_id The identifier of the entity related to the topic.

request_id Request id of the``request_data`` transaction.

stream_id Id of the stream used for the communication.

ub Serialized topic data.

length Length of the serialized data.

args User pointer data.

void uxr_set_time_callback(uxrSession* session, uxrOnTimeFunc on_time_func, void*
→˓args);

Assigns the time callback, to let the user perform custom time calculations based on client and agent timestamps.

session Session structure previously initialized.

on_time_func Function callback that is called .. ?

args User pointer data. The args are provided to the on_time_func function.

The function signature for the on_time_func callback is:

5.9. API 51

MicroXRCE-DDS Documentation, Release 2.1.1

typedef void (*uxrOnTimeFunc) (struct uxrSession* session, int64_t current_timestamp,
→˓int64_t transmit_timestamp,

int64_t received_timestamp, int64_t originate_
→˓timestamp, void* args);

session Session structure related to the topic.

current_timestamp Client’s timestamp of the response packet reception.

transmit_timestamp Client’s timestamp of the request packet transmission.

received_timestamp Agent’s timestamp of the request packet reception.

originate_timestamp Agent’s timestamp of the response packet transmission.

args User pointer data.

void uxr_set_request_callback(uxrSession* session, uxrOnRequestFunc on_request_func,
→˓void* args);

Sets the request callback, which is called when the Agent sends a READ_DATA submessage associated with a
Requester.

session Session structure previously initialized.

on_request_func Function callback that is called when the Agent sends a READ_DATA submessage
associated with a Requester.

args User pointer data. The args are provided to the on_request_func function.

The function signature for the on_request_func callback is:

typedef void (*uxrOnRequestFunc) (struct uxrSession* session, uxrObjectId object_id,
→˓uint16_t request_id,

SampleIdentity* sample_id, struct ucdrBuffer* ub,
→˓uint16_t length, void* args);

session Session structure related to the topic.

object_id The identifier of the entity related to the request.

request_id Request id of the``request_data`` transaction.

sample_id Identifier of the request.

ub Serialized request data.

length Length of the serialized data.

args User pointer data.

void uxr_set_reply_callback(uxrSession* session, uxrOnReplyFunc on_reply_func, void*
→˓args);

Sets the reply callback, which is called when the Agent sends a READ_DATA submessage associated with a Replier.

session Session structure previously initialized.

on_reply_func Function callback that is called when the Agent sends a READ_DATA submessage asso-
ciated with a Replier

52 Chapter 5. Structure of the documentation

MicroXRCE-DDS Documentation, Release 2.1.1

args User pointer data. The args are provided to on_reply_func function.

typedef void (*uxrOnReplyFunc) (struct uxrSession* session, uxrObjectId object_id,
→˓uint16_t request_id, uint16_t reply_id,

struct ucdrBuffer* ub, uint16_t length, void* args);

session Session structure related to the topic.

object_id The identifier of the entity related to the request.

request_id Request id of the``request_data`` transaction.

reply_id Identifier of the reply.

ub Serialized request data.

length Length of the serialized data.

args User pointer data.

bool uxr_create_session(uxrSession* session);

Creates a new session on the Agent. This function logs in a session, enabling any other XRCE communication with
the Agent.

session Session structure previously initialized.

void uxr_create_session_retries(uxrSession* session, size_t retries);

Attempts to establish a new session on the Agent retries times. This function logs in a session, enabling any other
XRCE communication with the Agent.

session Session structure previously initialized.

retries Number of attempts for creating a session.

bool uxr_delete_session(uxrSession* session);

Deletes a session previously created. All XRCE entities created with the session are removed. This function logs out
a session, disabling any other XRCE communication with the Agent.

session Session structure previously initialized and created.

bool uxr_delete_session_retries(uxrSession* session, size_t retries);

Attempts to delete a previously created session retries times. All XRCE entities created with the session are
removed. This function logs out a session, disabling any other XRCE communication with the Agent.

session Session structure previously initialized and created.

retries Number of attempts for deleting a session.

5.9. API 53

MicroXRCE-DDS Documentation, Release 2.1.1

uxrStreamId uxr_create_output_best_effort_stream(uxrSession* session, uint8_t* buffer,
→˓ size_t size);

Creates and initializes an output best-effort stream for writing. The uxrStreamId returned represents the new
stream and can be used to manage it. The number of available calls to this function must be less or equal than
CONFIG_MAX_OUTPUT_BEST_EFFORT_STREAMS CMake argument.

session Session structure previously initialized and created.

buffer Memory block where the messages are written.

size Buffer size.

uxrStreamId uxr_create_output_reliable_stream(uxrSession* session, uint8_t* buffer,
→˓size_t size, size_t history);

Creates and initializes an output reliable stream for writing. The uxrStreamId returned represents the new
stream and can be used to manage it. The number of available calls to this function must be less or equal than
CONFIG_MAX_OUTPUT_RELIABLE_STREAMS CMake argument.

session Session structure previously initialized and created.

buffer Memory block where the messages are written.

size Buffer size.

history History used for reliable connection. The buffer size is split into a history number of smaller
buffers. The history must be a divisor of the buffer size and a power of two.

uxrStreamId uxr_create_input_best_effort_stream(uxrSession* session);

Creates and initializes an input best-effort stream for receiving messages. The uxrStreamId returned represents
the new stream and can be used to manage it. The number of available calls to this function must be less or equal than
CONFIG_MAX_INPUT_BEST_EFFORT_STREAMS CMake argument.

session Session structure previously initialized and created.

uxrStreamId uxr_create_input_reliable_stream(uxrSession* session, uint8_t* buffer,
→˓size_t size, size_t history);

Creates and initializes an input reliable stream for receiving messages. The returned uxrStreamId represents the
new stream and can be used to manage it. The number of available calls to this function must be less or equal than
CONFIG_MAX_INPUT_RELIABLE_STREAMS CMake argument.

session Session structure previously initialized and created.

buffer Memory block where the messages are stored.

size Buffer size.

history History used for reliable connection. The buffer size is split into a history number of smaller
buffers. The history must be a divisor of the buffer size and a power of two.

54 Chapter 5. Structure of the documentation

MicroXRCE-DDS Documentation, Release 2.1.1

void uxr_flash_output_streams(uxrSession* session);

Flashes all output streams sending the data through the transport.

session Session structure previously initialized and created.

void uxr_run_session_time(uxrSession* session, int timeout_ms);

This function processes the internal functionality of a session. It implies:

1. Flushing all output streams sending the data through the transport.

2. If there is any reliable stream, it performs the associated reliable behaviour to ensure communication.

3. Listening to messages from the Agent and calling the associated callback if it exists (which can be a sta-
tus/topic/time/request or reply callback)

The time suffix function version perform these actions and listens to messages for a timeout_ms duration, which
is refreshed each time a new message is received, that is, the counter restarts for another timeout_ms period. Only
when the wait time for a message overcomes the timeout_ms duration, the function finishes. The function returns
true if the sending data have been confirmed, false otherwise.

session Session structure previously initialized and created.

timeout_ms Time for waiting for each new message, in milliseconds. For waiting without timeout, set
the value to UXR_TIMEOUT_INF

void uxr_run_session_timeout(uxrSession* session, int timeout_ms);

This function processes the internal functionality of a session. It implies:

1. Flushing all output streams sending the data through the transport.

2. If there is any reliable stream, it performs the associated reliable behaviour to ensure communication.

3. Listening to messages from the Agent and calling the associated callback if it exists (which can be a sta-
tus/topic/time/request or reply callback)

The timeout suffix function version performs these actions and listens to messages for a total timeout_ms du-
ration. Each time a new message is received, the counter retakes from where it left, that is, for a period equal to
timeout_ms minus the time spent waiting for the previous message(s). When the total wait time overcomes the
timeout_ms duration, the function finishes. The function returns true if the sending data have been confirmed,
false otherwise.

session Session structure previously initialized and created.

timeout_ms Total time for waiting for a new message, in milliseconds. For waiting without timeout, set
the value to UXR_TIMEOUT_INF

void uxr_run_session_until_timeout(uxrSession* session, int timeout_ms);

This function processes the internal functionality of a session. It implies:

1. Flushing all output streams sending the data through the transport.

2. If there is any reliable stream, it performs the associated reliable behaviour to ensure communication.

5.9. API 55

MicroXRCE-DDS Documentation, Release 2.1.1

3. Listening to messages from the Agent and calling the associated callback if it exists (which can be a sta-
tus/topic/time/request or reply callback)

The until_timeout suffix function version performs these actions until receiving one message, for a
timeout_ms time duration. Once a message has been received or the timeout has been reached, the function finishes.
The function returns true if it has received a message, false if the timeout has been reached.

session Session structure previously initialized and created.

timeout_ms Maximum time for waiting for a new message, in milliseconds. For waiting without timeout,
set the value to UXR_TIMEOUT_INF

bool uxr_run_session_until_confirm_delivery(uxrSession* session, int timeout_ms);

This function processes the internal functionality of a session. It implies:

1. Flushing all output streams sending the data through the transport.

2. If there is any reliable stream, it performs the associated reliable behaviour to ensure communication.

3. Listening to messages from the Agent and calling the associated callback if it exists (which can be a sta-
tus/topic/time/request or reply callback)

The until_confirm_delivery suffix function version performs these actions during timeout_ms or until the
output reliable streams confirm that the sent messages have been received by the Agent. The function returns true if
the sent data have been confirmed, false otherwise.

session Session structure previously initialized and created.

timeout_ms Maximum waiting time for a new message, in milliseconds. For waiting without timeout,
set the value to UXR_TIMEOUT_INF

bool uxr_run_session_until_all_status(uxrSession* session, int timeout_ms, const
→˓uint16_t* request_list,

uint8_t* status_list, size_t list_size);

This function processes the internal functionality of a session. It implies:

1. Flushing all output streams sending the data through the transport.

2. If there is any reliable stream, it performs the associated reliable behaviour to ensure communication.

3. Listening to messages from the Agent and calling the associated callback if it exists (which can be a sta-
tus/topic/time/request or reply callback)

The until_all_status suffix function version performs these actions during a timeout_ms duration or until
all requested statuses have been received. The function returns true if all statuses have been received and all of them
have the value UXR_STATUS_OK or UXR_STATUS_OK_MATCHED, false otherwise.

session Session structure previously initialized and created.

timeout_ms Maximum waiting time for a new message, in milliseconds. For waiting without timeout,
set the value to UXR_TIMEOUT_INF

request_list An array of requests to confirm with a status.

status_list An uninitialized array with the same size as request_list where the status values are
written. The position of each status in the status_list matches the corresponding request position in
the request_list.

list_size The size of the request_list and status_list arrays.

56 Chapter 5. Structure of the documentation

MicroXRCE-DDS Documentation, Release 2.1.1

bool uxr_run_session_until_one_status(uxrSession* session, int timeout_ms, const
→˓uint16_t* request_list,

uint8_t* status_list, size_t list_size);

This function processes the internal functionality of a session. It implies:

1. Flushing all output streams sending the data through the transport.

2. If there is any reliable stream, it performs the associated reliable behaviour to ensure communication.

3. Listening to messages from the Agent and calling the associated callback if it exists (which can be a sta-
tus/topic/time/request or reply callback)

The until_one_status suffix function version performs these actions during a timeout_ms duration or until
one requested status has been received. The function returns true if one status has been received and has the value
UXR_STATUS_OK or UXR_STATUS_OK_MATCHED, false otherwise.

session Session structure previously initialized and created.

timeout_ms Maximum waiting time for a new message, in milliseconds. For waiting without timeout,
set the value to UXR_TIMEOUT_INF

request_list An array of requests to confirm with a status.

status_list An uninitialized array with the same size as request_list where the status values are
written. The position of each status in the status_list matches the corresponding request position in
the request_list.

list_size The size of the request_list and status_list arrays.

bool uxr_run_session_until_data(uxrSession* session, int timeout_ms);

This function processes the internal functionality of a session. It implies:

1. Flushing all output streams sending the data through the transport.

2. If there is any reliable stream, it operates according to the associated reliable behaviour to ensure communica-
tion.

3. Listening to messages from the Agent and calling the associated callback if it exists (which can be a sta-
tus/topic/time/request or reply callback)

The until_data suffix function version performs these actions during a timeout_ms duration or until a subscrip-
tion data, request or reply is received. The function returns true if a subscription data, request or reply is received,
and false otherwise.

session Session structure previously initialized and created.

timeout_ms Maximum waiting time for a new message, in milliseconds. For waiting without timeout,
set the value to UXR_TIMEOUT_INF

bool uxr_sync_session(uxrSession* session, int time);

This function synchronizes the session time with the Agent using the NTP protocol by default.

session Session structure previously initialized and created.

time The waiting time in milliseconds.

5.9. API 57

MicroXRCE-DDS Documentation, Release 2.1.1

int64_t uxr_epoch_millis(uxrSession* session);

This function returns the epoch time in milliseconds, taking into account the offset computed during the time synchro-
nization.

session Session structure previously initialized.

int64_t uxr_epoch_nanos(uxrSession* session);

This function returns the epoch time in nanoseconds taking into account the offset computed during the time synchro-
nization.

session Session structure previously initialized and created.

Create entities by XML

The declaration of these functions can be found in uxr/client/profile/session/
create_entities_xml.h.

uint16_t uxr_buffer_create_participant_xml(uxrSession* session, uxrStreamId stream_id,
→˓ uxrObjectId object_id,

uint16_t domain_id, const char* xml, uint8_
→˓t mode);

Creates a participant entity in the Agent. The message is written into the stream buffer. To send the message, it is
necessary to call either the uxr_flash_output_streams or the uxr_run_session function.

session Session structure previously initialized and created.

stream_id The output stream ID where the messages are written.

object_id The identifier of the new entity. Later, the entity can be referenced with this id. The type must
be UXR_PARTICIPANT_ID.

domain_id The DDS domain identifier.

xml An XML representation of the new entity.

mode Determines the creation entity mode. The Creation Policy Table describes the entities’ creation
behaviour according to the UXR_REUSE and UXR_REPLACE flags (see Creation Policy Table).

uint16_t uxr_buffer_create_topic_xml(uxrSession* session, uxrStreamId stream_id,
→˓uxrObjectId object_id,

uxrObjectId participant_id, const char* xml,
→˓uint8_t mode);

Creates a topic entity in the Agent. The message is written into the stream buffer. To send the message, it is necessary
to call either the uxr_flash_output_streams or the uxr_run_session function.

session Session structure previously initialized and created.

58 Chapter 5. Structure of the documentation

MicroXRCE-DDS Documentation, Release 2.1.1

stream_id The output stream ID where the messages are written.

object_id The identifier of the new entity. Later, the entity can be referenced with this id. The type must
be UXR_TOPIC_ID.

participant_id The identifier of the associated participant. The type must be UXR_PARTICIPANT_ID.

xml An XML representation of the new entity.

mode Determines the creation entity mode. The Creation Policy Table describes the entities’ creation
behaviour according to the UXR_REUSE and UXR_REPLACE flags (see Creation Policy Table).

uint16_t uxr_buffer_create_publisher_xml(uxrSession* session, uxrStreamId stream_id,
→˓uxrObjectId object_id,

uxrObjectId participant_id, const char* xml,
→˓uint8_t mode);

Creates a publisher entity in the Agent. The message is written into the stream buffer. To send the message, it is
necessary to call either the uxr_flash_output_streams or the uxr_run_session function.

session Session structure previously initialized and created.

stream_id The output stream ID where the messages are written.

object_id The identifier of the new entity. Later, the entity can be referenced with this id. The type must
be UXR_PUBLISHER_ID.

participant_id The identifier of the associated participant. The type must be UXR_PARTICIPANT_ID.

xml An XML representation of the new entity.

mode Determines the creation entity mode. The Creation Policy Table describes the entities’ creation
behaviour according to the UXR_REUSE and UXR_REPLACE flags (see Creation Policy Table).

uint16_t uxr_buffer_create_subscriber_xml(uxrSession* session, uxrStreamId stream_id,
→˓uxrObjectId object_id,

uxrObjectId participant_id, const char* xml,
→˓ uint8_t mode);

Creates a subscriber entity in the Agent. The message is written into the stream buffer. To send the message, it is
necessary to call either the uxr_flash_output_streams or the uxr_run_session function.

session Session structure previously initialized and created.

stream_id The output stream ID where the messages are written.

object_id The identifier of the new entity. Later, the entity can be referenced with this id. The type must
be UXR_SUBSCRIBER_ID.

participant_id The identifier of the associated participant. The type must be UXR_PARTICIPANT_ID.

xml An XML representation of the new entity.

mode Determines the creation entity mode. The Creation Policy Table describes the entities’ creation
behaviour according to the UXR_REUSE and UXR_REPLACE flags (see Creation Policy Table).

5.9. API 59

MicroXRCE-DDS Documentation, Release 2.1.1

uint16_t uxr_buffer_create_datawriter_xml(uxrSession* session, uxrStreamId stream_id,
→˓uxrObjectId object_id,

uxrObjectId publisher_id, const char* xml,
→˓uint8_t mode);

Creates a datawriter entity in the Agent. The message is written into the stream buffer. To send the message, it is
necessary to call either the uxr_flash_output_streams or the uxr_run_session function.

session Session structure previously initialized and created.

stream_id The output stream ID where the messages are written.

object_id The identifier of the new entity. Later, the entity can be referenced with this id. The type must
be UXR_DATAWRITER_ID.

publisher_id The identifier of the associated publisher. The type must be UXR_PUBLISHER_ID.

xml An XML representation of the new entity.

mode Determines the creation entity mode. The Creation Policy Table describes the entities’ creation
behaviour according to the UXR_REUSE and UXR_REPLACE flags (see Creation Policy Table).

uint16_t uxr_buffer_create_datareader_xml(uxrSession* session, uxrStreamId stream_id,
→˓uxrObjectId object_id,

uxrObjectId subscriber_id, const char* xml,
→˓uint8_t mode);

Creates a datareader entity in the Agent. The message is written into the stream buffer. To send the message, it is
necessary to call either the uxr_flash_output_streams or the uxr_run_session function.

session Session structure previously initialized and created.

stream_id The output stream ID where the messages are written.

object_id The identifier of the new entity. Later, the entity can be referenced with this id. The type must
be UXR_DATAREADER_ID.

subscriber_id The identifier of the associated subscriber. The type must be UXR_SUBSCRIBER_ID.

xml An XML representation of the new entity.

mode Determines the creation entity mode. The Creation Policy Table describes the entities’ creation
behaviour according to the UXR_REUSE and UXR_REPLACE flags (see Creation Policy Table).

uint16_t uxr_buffer_create_requester_xml(uxrSession* session, uxrStreamId stream_id,
→˓uxrObjectId object_id,

uxrObjectId participant_id, const char* xml,
→˓uint8_t mode);

Creates a requester entity in the Agent. The message is written into the stream buffer. To send the message, it is
necessary to call either the uxr_flash_output_streams or the uxr_run_session function.

session Session structure previously initialized and created.

stream_id The output stream ID where the messages are written.

object_id The identifier of the new entity. Later, the entity can be referenced with this id. The type must
be UXR_REQUESTER_ID.

participant_id The identifier of the associated participant. The type must be UXR_PARTICIPANT_ID.

60 Chapter 5. Structure of the documentation

MicroXRCE-DDS Documentation, Release 2.1.1

xml An XML representation of the new entity.

mode Determines the creation entity mode. The Creation Policy Table describes the entities’ creation
behaviour according to the UXR_REUSE and UXR_REPLACE flags (see Creation Policy Table).

uint16_t uxr_buffer_create_replier_xml(uxrSession* session, uxrStreamId stream_id,
→˓uxrObjectId object_id,

uxrObjectId participant_id, const char* xml,
→˓uint8_t mode);

Creates a replier entity in the Agent. The message is written into the stream buffer. To send the message, it is necessary
to call either the uxr_flash_output_streams or the uxr_run_session function.

session Session structure previously initialized and created.

stream_id The output stream ID where the messages are written.

object_id The identifier of the new entity. Later, the entity can be referenced with this id. The type must
be UXR_REPLIER_ID.

participant_id The identifier of the associated participant. The type must be UXR_PARTICIPANT_ID.

xml An XML representation of the new entity.

mode Determines the creation entity mode. The Creation Policy Table describes the entities’ creation
behaviour according to the UXR_REUSE and UXR_REPLACE flags (see Creation Policy Table).

Create entities by reference

The declaration of these functions can be found in uxr/client/profile/session/
create_entities_ref.h.

uint16_t uxr_buffer_create_participant_ref(uxrSession* session, uxrStreamId stream_id,
→˓ uxrObjectId object_id,

uint16_t domain_id, const char* ref, uint8_
→˓t mode);

Creates a participant entity in the Agent. The message is written into the stream buffer. To send the message, it is
necessary to call either the uxr_flash_output_streams or the uxr_run_session function.

session Session structure previously initialized and created.

stream_id The output stream ID where the messages are written.

object_id The identifier of the new entity. Later, the entity can be referenced with this id. The type must
be UXR_PARTICIPANT_ID

domain_id DDS Domain ID for the participant.

ref A reference to the new entity.

mode Determines the creation entity mode. The Creation Policy Table describes the entities’ creation
behaviour according to the UXR_REUSE and UXR_REPLACE flags (see Creation Policy Table).

5.9. API 61

MicroXRCE-DDS Documentation, Release 2.1.1

uint16_t uxr_buffer_create_topic_ref(uxrSession* session, uxrStreamId stream_id,
→˓uxrObjectId object_id,

uxrObjectId participant_id, const char* ref,
→˓uint8_t mode);

Creates a topic entity in the Agent. The message is written into the stream buffer. To send the message, it is necessary
to call either the uxr_flash_output_streams or the uxr_run_session function.

session Session structure previously initialized and created.

stream_id The output stream ID where the messages are written.

object_id The identifier of the new entity. Later, the entity can be referenced with this id. The type must
be UXR_TOPIC_ID

participant_id The identifier of the associated participant. The type must be UXR_PARTICIPANT_ID

ref A reference to the new entity.

mode Determines the creation entity mode. The Creation Policy Table describes the entities’ creation
behaviour according to the UXR_REUSE and UXR_REPLACE flags (see Creation Policy Table).

uint16_t uxr_buffer_create_datawriter_ref(uxrSession* session, uxrStreamId stream_id,
→˓uxrObjectId object_id,

uxrObjectId publisher_id, const char* ref,
→˓uint8_t mode);

Creates a datawriter entity in the Agent. The message is written into the stream buffer. To send the message, it is
necessary to call either the uxr_flash_output_streams or the uxr_run_session function.

session Session structure previously initialized and created.

stream_id The output stream ID where the messages are written.

object_id The identifier of the new entity. Later, the entity can be referenced with this id. The type must
be UXR_DATAWRITER_ID

publisher_id The identifier of the associated publisher. The type must be UXR_PUBLISHER_ID

ref A reference to the new entity.

mode Determines the creation entity mode. The Creation Policy Table describes the entities’ creation
behaviour according to the UXR_REUSE and UXR_REPLACE flags (see Creation Policy Table).

uint16_t uxr_buffer_create_datareader_ref(uxrSession* session, uxrStreamId stream_id,
→˓uxrObjectId object_id,

uxrObjectId subscriber_id, const char* ref,
→˓uint8_t mode);

Creates a datareader entity in the Agent. The message is written into the stream buffer. To send the message, it is
necessary to call either the uxr_flash_output_streams or the uxr_run_session function.

session Session structure previously initialized and created.

stream_id The output stream ID where the messages are written.

object_id The identifier of the new entity. Later, the entity can be referenced with this id. The type must
be UXR_DATAREADER_ID.

subscriber_id The identifier of the associated subscriber. The type must be UXR_SUBSCRIBER_ID.

62 Chapter 5. Structure of the documentation

MicroXRCE-DDS Documentation, Release 2.1.1

ref A reference to the new entity.

mode Determines the creation entity mode. The Creation Policy Table describes the entities’ creation
behaviour according to the UXR_REUSE and UXR_REPLACE flags (see Creation Policy Table).

uint16_t uxr_buffer_create_requester_ref(uxrSession* session, uxrStreamId stream_id,
→˓uxrObjectId object_id,

uxrObjectId participant_id, const char* ref,
→˓uint8_t mode);

Creates a requester entity in the Agent. The message is written into the stream buffer. To send the message, it is
necessary to call either the uxr_flash_output_streams or the uxr_run_session function.

session Session structure previously initialized and created.

stream_id The output stream ID where the messages are written.

object_id The identifier of the new entity. Later, the entity can be referenced with this id. The type must
be UXR_REQUESTER_ID.

participant_id The identifier of the associated participant. The type must be UXR_PARTICIPANT_ID.

ref A reference to the new entity.

mode Determines the creation entity mode. The Creation Policy Table describes the entities’ creation
behaviour according to the UXR_REUSE and UXR_REPLACE flags (see Creation Policy Table).

uint16_t uxr_buffer_create_replier_ref(uxrSession* session, uxrStreamId stream_id,
→˓uxrObjectId object_id,

uxrObjectId participant_id, const char* ref,
→˓uint8_t mode);

Creates a replier entity in the Agent. The message is written into the stream buffer. To send the message, it is necessary
to call either the uxr_flash_output_streams or the uxr_run_session function.

session Session structure previously initialized and created.

stream_id The output stream ID where the messages are written.

object_id The identifier of the new entity. Later, the entity can be referenced with this id. The type must
be UXR_REPLIER_ID.

participant_id The identifier of the associated participant. The type must be UXR_PARTICIPANT_ID.

ref A reference to the new entity.

mode Determines the creation entity mode. The Creation Policy Table describes the entities’ creation
behaviour according to the UXR_REUSE and UXR_REPLACE flags (see Creation Policy Table).

5.9. API 63

MicroXRCE-DDS Documentation, Release 2.1.1

Create entities by binary

The declaration of these functions can be found in uxr/client/profile/session/
create_entities_ref.h.

uint16_t uxr_buffer_create_participant_bin(uxrSession* session, uxrStreamId stream_id,
→˓ uxrObjectId object_id,

uint16_t domain_id, const char* participant_name, uint8_t mode);

Creates a participant entity in the Agent. The message is written into the stream buffer. To send the message, it is
necessary to call either the uxr_flash_output_streams or the uxr_run_session function.

session Session structure previously initialized and created.

stream_id The output stream ID where the messages are written.

object_id The identifier of the new entity. Later, the entity can be referenced with this id. The type must
be UXR_PARTICIPANT_ID

domain_id DDS Domain ID for the participant.

participant_name Participant name.

mode Determines the creation entity mode. The Creation Policy Table describes the entities’ creation
behaviour according to the UXR_REUSE and UXR_REPLACE flags (see Creation Policy Table).

uint16_t uxr_buffer_create_topic_bin(uxrSession* session, uxrStreamId stream_id,
→˓uxrObjectId object_id,

uxrObjectId participant_id, const char* topic_name, const char* type_name, uint8_
→˓t mode);

Creates a topic entity in the Agent. The message is written into the stream buffer. To send the message, it is necessary
to call either the uxr_flash_output_streams or the uxr_run_session function.

session Session structure previously initialized and created.

stream_id The output stream ID where the messages are written.

object_id The identifier of the new entity. Later, the entity can be referenced with this id. The type must
be UXR_TOPIC_ID

participant_id The identifier of the associated participant. The type must be UXR_PARTICIPANT_ID

topic_name Topic name.

type_name Type name.

mode Determines the creation entity mode. The Creation Policy Table describes the entities’ creation
behaviour according to the UXR_REUSE and UXR_REPLACE flags (see Creation Policy Table).

uint16_t uint16_t uxr_buffer_create_publisher_bin(uxrSession* session, uxrStreamId
→˓stream_id, uxrObjectId object_id,

uxrObjectId participant_id, uint8_t mode);

Creates a publisher entity in the Agent. The message is written into the stream buffer. To send the message, it is
necessary to call either the uxr_flash_output_streams or the uxr_run_session function.

session Session structure previously initialized and created.

64 Chapter 5. Structure of the documentation

MicroXRCE-DDS Documentation, Release 2.1.1

stream_id The output stream ID where the messages are written.

object_id The identifier of the new entity. Later, the entity can be referenced with this id. The type must
be UXR_PUBLISHER_ID.

participant_id The identifier of the associated participant. The type must be UXR_PARTICIPANT_ID.

mode Determines the creation entity mode. The Creation Policy Table describes the entities’ creation
behaviour according to the UXR_REUSE and UXR_REPLACE flags (see Creation Policy Table).

uint16_t uint16_t uxr_buffer_create_subscriber_bin(uxrSession* session, uxrStreamId
→˓stream_id, uxrObjectId object_id,

uxrObjectId participant_id, uint8_t mode);

Creates a subscriber entity in the Agent. The message is written into the stream buffer. To send the message, it is
necessary to call either the uxr_flash_output_streams or the uxr_run_session function.

session Session structure previously initialized and created.

stream_id The output stream ID where the messages are written.

object_id The identifier of the new entity. Later, the entity can be referenced with this id. The type must
be UXR_SUBSCRIBER_ID.

participant_id The identifier of the associated participant. The type must be UXR_PARTICIPANT_ID.

mode Determines the creation entity mode. The Creation Policy Table describes the entities’ creation
behaviour according to the UXR_REUSE and UXR_REPLACE flags (see Creation Policy Table).

uint16_t uxr_buffer_create_datawriter_bin(uxrSession* session, uxrStreamId stream_id,
→˓uxrObjectId object_id,

uxrObjectId publisher_id, uxrObjectId topic_id, uxrQoS_t qos, uint8_t mode);

Creates a datawriter entity in the Agent. The message is written into the stream buffer. To send the message, it is
necessary to call either the uxr_flash_output_streams or the uxr_run_session function.

session Session structure previously initialized and created.

stream_id The output stream ID where the messages are written.

object_id The identifier of the new entity. Later, the entity can be referenced with this id. The type must
be UXR_DATAWRITER_ID

publisher_id The identifier of the associated publisher. The type must be UXR_PUBLISHER_ID

topic_id The identifier of the associated topic. The type must be UXR_TOPIC_ID

qos uxrQoS_t struct describing QoS.

mode Determines the creation entity mode. The Creation Policy Table describes the entities’ creation
behaviour according to the UXR_REUSE and UXR_REPLACE flags (see Creation Policy Table).

uint16_t uxr_buffer_create_datareader_bin(uxrSession* session, uxrStreamId stream_id,
→˓uxrObjectId object_id,

uxrObjectId subscriber_id, uxrObjectId topic_id, uxrQoS_t qos, uint8_t mode);

Creates a datareader entity in the Agent. The message is written into the stream buffer. To send the message, it is
necessary to call either the uxr_flash_output_streams or the uxr_run_session function.

5.9. API 65

MicroXRCE-DDS Documentation, Release 2.1.1

session Session structure previously initialized and created.

stream_id The output stream ID where the messages are written.

object_id The identifier of the new entity. Later, the entity can be referenced with this id. The type must
be UXR_DATAREADER_ID.

subscriber_id The identifier of the associated subscriber. The type must be UXR_SUBSCRIBER_ID.

topic_id The identifier of the associated topic. The type must be UXR_TOPIC_ID

qos uxrQoS_t struct describing QoS.

mode Determines the creation entity mode. The Creation Policy Table describes the entities’ creation
behaviour according to the UXR_REUSE and UXR_REPLACE flags (see Creation Policy Table).

uint16_t uxr_buffer_create_requester_bin(uxrSession* session, uxrStreamId stream_id,
→˓uxrObjectId object_id,

uxrObjectId participant_id, const char* service_name, const char* request_type,
→˓const char* reply_type,

const char* request_topic_name, const char* reply_topic_name, uxrQoS_t qos, uint8_
→˓t mode);

Creates a requester entity in the Agent. The message is written into the stream buffer. To send the message, it is
necessary to call either the uxr_flash_output_streams or the uxr_run_session function.

session Session structure previously initialized and created.

stream_id The output stream ID where the messages are written.

object_id The identifier of the new entity. Later, the entity can be referenced with this id. The type must
be UXR_REQUESTER_ID.

participant_id The identifier of the associated participant. The type must be UXR_PARTICIPANT_ID.

service_name Service name.

request_type Request type name.

reply_type Reply type name.

request_topic_name Request topic name.

reply_topic_name Reply topic name.

qos uxrQoS_t struct describing QoS.

mode Determines the creation entity mode. The Creation Policy Table describes the entities’ creation
behaviour according to the UXR_REUSE and UXR_REPLACE flags (see Creation Policy Table).

uint16_t uxr_buffer_create_replier_bin(uxrSession* session, uxrStreamId stream_id,
→˓uxrObjectId object_id,

uxrObjectId participant_id, const char* service_name, const char* request_type,
→˓const char* reply_type,

const char* request_topic_name, const char* reply_topic_name, uxrQoS_t qos, uint8_
→˓t mode);

Creates a replier entity in the Agent. The message is written into the stream buffer. To send the message, it is necessary
to call either the uxr_flash_output_streams or the uxr_run_session function.

session Session structure previously initialized and created.

66 Chapter 5. Structure of the documentation

MicroXRCE-DDS Documentation, Release 2.1.1

stream_id The output stream ID where the messages are written.

object_id The identifier of the new entity. Later, the entity can be referenced with this id. The type must
be UXR_REPLIER_ID.

participant_id The identifier of the associated participant. The type must be UXR_PARTICIPANT_ID.

service_name Service name.

request_type Request type name.

reply_type Reply type name.

request_topic_name Request topic name.

reply_topic_name Reply topic name.

qos uxrQoS_t struct describing QoS.:mode: Determines the creation entity mode. The Creation Policy
Table describes the entities’ creation behaviour according to the UXR_REUSE and UXR_REPLACE
flags (see Creation Policy Table).

Create entities common profile

These functions are enabled when either PROFILE_CREATE_ENTITIES_XML or
PROFILE_CREATE_ENTITIES_REF are activated as CMake arguments. The declaration of these functions
can be found in uxr/client/profile/session/common_create_entities.h.

uint16_t uxr_buffer_delete_entity(uxrSession* session, uxrStreamId stream_id,
→˓uxrObjectId object_id);

Removes an entity. The message is written into the stream buffer. To send the message, it is necessary to call either
the uxr_flash_output_streams or the uxr_run_session function.

session Session structure previously initialized and created.

stream_id The output stream ID where the messages are written.

object_id The identifier of the object which is deleted.

Read access

The Read Access is used by the Client to handle the read operation on the Agent. The declaration of these functions
can be found in uxr/client/profile/session/read_access.h.

uint16_t uxr_buffer_request_data(uxrSession* session, uxrStreamId stream_id,
→˓uxrObjectId datareader_id,

uxrStreamId data_stream_id, const
→˓uxrDeliveryControl* const control);

5.9. API 67

MicroXRCE-DDS Documentation, Release 2.1.1

This function requests a datareader previously created on the Agent to perform a read operation that fetches data
from the middleware. The returned value is an identifier of the request. All received topics have the same request
identifier. The topics are received on the callback topic through the run_session function. If there is no error with
the request data, a status callback with the value UXR_STATUS_OK is generated along with the topics retrieval. If
there is an error, a status error is sent by the Agent. The message is written into the stream buffer. To send the message,
it is necessary to call either the uxr_flash_output_streams or the uxr_run_session function.

session Session structure previously initialized and created.

stream_id The output stream ID used to send messages to the Agent.

datareader_id The ID of the datareader that reads the topics from the middleware.

data_stream_id The input stream ID where the data is received.

control Optional information allowing the Client to configure the data delivery from the Agent. Details
on the configurable parameters can be found in the Read Access Delivery Control of the eProsima
Micro XRCE-DDS Client page. A NULL value is accepted, in which case only one topic is received.

uint16_t uxr_buffer_cancel_data(uxrSession* session, uxrStreamId stream_id,
→˓uxrObjectId datareader_id);

This function requests a datareader, requester or replier previously created on the Agent to cancel the data received
from the middleware. It does so by resetting the delivery_control parameters and the input stream ID used to
receive the data. The returned value is an identifier of the request.

session Session structure previously initialized and created.

stream_id The output stream ID used to send messages to the Agent.

datareader_id The ID of the datareader that reads the topics from the middleware.

Write access profile

The Write Access is used by the Client to handle the write operation on the Agent. The declaration of these functions
can be found in uxr/client/profile/session/write_access.h.

uint16_t uxr_prepare_output_stream(uxrSession* session, uxrStreamId stream_id,
→˓uxrObjectId entity_id,

ucdrBuffer* ub, uint32_t data_size);

This function requests a datawriter, requester or replier previously created on the Agent to perform a write op-
eration into a specific output stream. It initializes a ucdrBuffer struct where a data of data_size size
must be serialized. If there is sufficient space for writing data_size bytes into the stream, the returned value
is the XRCE request ID, otherwise it is 0. The topic is sent in the following run_session function. If
UCLIENT_PROFILE_MULTITHREAD is enabled, user should unlock the stream lock after serializing the requested
amount of data using UXR_UNLOCK_STREAM_ID(session, stream_id);

Note: All data_size bytes requested are sent to the Agent after a run_session call, no matter if the
ucdrBuffer has been used or not.

session Session structure previously initialized and created.

68 Chapter 5. Structure of the documentation

MicroXRCE-DDS Documentation, Release 2.1.1

stream_id The output stream ID where the messages are written.

entity_id The ID of the datawriter, requester or replier that writes data into the middleware.

ub The ucdrBuffer struct used to serialize the data. This struct points to the requested memory slot
in the stream.

data_size The slot, in bytes, that is reserved in the stream.

bool uxr_buffer_request(uxrSession* session, uxrStreamId stream_id, uxrObjectId
→˓requester_id, uint8_t* buffer, size_t len);

This function buffers a request into a specific output stream. The request is sent in the following run_session
function call.

session Session structure previously initialized and created.

stream_id The output stream ID where the messages are written.

requester_id The ID of the requester that forwards the request to the middleware.

buffer The raw buffer that contains the serialized request.

len The size of the serialized request.

bool uxr_buffer_reply(uxrSession* session, uxrStreamId stream_id, uxrObjectId replier_
→˓id, uint8_t* buffer, size_t len);

This function buffers a reply into a specific output stream. The request is sent in the following run_session
function call.

session Session structure previously initialized and created.

stream_id The output stream ID where the messages are written.

replier_id The ID of the replier that writes the reply to the middleware.

buffer The raw buffer that contains the serialized reply.

len The size of the serialized reply.

bool uxr_buffer_topic(uxrSession* session, uxrStreamId stream_id, uxrObjectId
→˓datawriter_id, uint8_t* buffer, size_t len);

This function buffers a topic into a specific output stream. The request is sent in the following run_session
function call.

session Session structure previously initialized and created.

stream_id The output stream ID where the messages are written.

datawriter_id The ID of the datawriter that writes the reply to the middleware.

buffer The raw buffer that contains the serialized topic.

len The size of the serialized topic.

5.9. API 69

MicroXRCE-DDS Documentation, Release 2.1.1

uint16_t uxr_prepare_output_stream_fragmented(uxrSession* session, uxrStreamId stream_
→˓id, uxrObjectId entity_id,

struct ucdrBuffer* ub, size_t data_size,
→˓uxrOnBuffersFull flush_callback);

This function requests a datawriter, requester or replier previously created on the Agent to allocate an output stream
of data_size bytes for a write operation. This function initializes an ucdrBuffer struct where a topic of
data_size size is serialized. If there is sufficient space for writing data_size bytes into the stream, the re-
turned value is the XRCE request ID, otherwise it is 0. The topic is sent in the following run_session function.
If, during the serialization process, the buffer gets overfilled, the flush_callback function is called and the user
has to run a session for flushing the stream. If UCLIENT_PROFILE_MULTITHREAD is enabled, user should un-
lock the stream lock after serializing the requested amount of data using UXR_UNLOCK_STREAM_ID(session,
stream_id);

Note: This approach is not valid for best-effort streams.

session Session structure previously initialized and created.

stream_id The output stream ID where the messages are written.

entity_id The ID of the datawriter, requester or replier that writes data into the middleware.

ub The ucdrBuffer struct used to serialize the topic. This struct points to the requested memory slot
in the stream.

data_size The slot, in bytes, that is reserved in the stream.

flush_callback Callback for flushing the output buffers.

The function signature for the flush_callback callback is:

typedef bool (*uxrOnBuffersFull) (struct uxrSession* session);

session Session structure related to the buffer to be flushed.

Discovery profile

The discovery profile allows discovering Agents in the network by UDP. The reachable Agents respond to the discovery
call by sending information about themselves, as their IP and port. There are two modes: unicast and multicast. The
discovery phase precedes the call to the uxr_create_session function, as it serves to determine the Agent to
connect with. These functions are enabled when PROFILE_DISCOVERY is activated as a CMake argument. The
declaration of these functions can be found in uxr/client/profile/discovery/discovery.h.

Note: This feature is only available on Linux.

bool uxr_discovery_agents_default(uint32_t attempts, int period, uxrOnAgentFound on_
→˓agent_func, void* args);

This function looks for Agents in the network using UDP/IP multicast with address “239.255.0.2” and port 7400
(which is the default used by the Agent).

attempts The times a discovery message is sent across the network.

70 Chapter 5. Structure of the documentation

MicroXRCE-DDS Documentation, Release 2.1.1

period The wait time between two successive discovery calls.

on_agent_func The callback function that is called when an Agent is discovered. It returns a boolean
value. A true means that the discovery routine has finished. A false implies that the discovery
routine must continue searching Agents.

args User arguments passed to the callback function.

The function signature for the on_agent_func callback is:

typedef bool (*uxrOnAgentFound) (const TransportLocator* locator, void* args);

locator Transport locator of a discovered agent.

args User pointer data.

bool uxr_discovery_agents(uint32_t attempts, int period, uxrOnAgentFound on_agent_
→˓func, void* args,

const TransportLocator* agent_list, size_t agent_list_size);

This function looks for Agents in the network using UDP/IP unicast, using a list of unicast directions with the addresses
and ports set by the user.

attempts The times a discovery message is sent across the network.

period The wait time between two successive discovery calls.

on_agent_func The callback function that is called when an Agent is discovered. It returns a boolean
value. A true means that the discovery routine has finished. A false implies that the discovery
routine must continue searching Agents.

args User arguments passed to the callback function.

agent_list The list of addresses used for discovering Agents.

agent_list_size The size of the agent_list.

The function signature for the on_time_func callback is the same as above.

Topic serialization

Functions to serialize and deserialize topics. These functions are generated automatically by the eProsima Micro
XRCE-DDS Gen utility fed with an IDL file with a topic TOPICTYPE. The declaration of these functions can be
found in the generated file TOPICTYPE.h.

bool TOPICTYPE_serialize_topic(struct ucdrBuffer* writer, const TOPICTYPE* topic);

This function serializes a topic into an ucdrBuffer. The returned value indicates if the serialization was successful.

writer The ucdrBuffer representing the buffer for the serialization.

topic Struct to serialize.

5.9. API 71

MicroXRCE-DDS Documentation, Release 2.1.1

bool TOPICTYPE_deserialize_topic(struct ucdrBuffer* reader, TOPICTYPE* topic);

This function deserializes a topic from an ucdrBuffer. The returned value indicates if the deserialization was
successful.

reader An ucdrBuffer representing the buffer for the deserialization.

topic Struct to deserialize.

uint32_t TOPICTYPE_size_of_topic(const TOPICTYPE* topic, uint32_t size);

This function counts the number of bytes that the topic needs in an ucdrBuffer.

topic Struct to count the size.

size Number of bytes already written into the ucdrBuffer. Typically, its value is 0 if the purpose is to use
in uxr_prepare_output_stream function.

General utilities

Utility functions. The declaration of these functions can be found in uxr/client/core/session/
stream_id.h and uxr/client/core/session/object_id.h.

uxrStreamId uxr_stream_id(uint8_t index, uxrStreamType type, uxrStreamDirection
→˓direction);

This function creates a stream identifier. This function does not create a new stream, it only creates its identifier to be
used in the Client API.

index Identifier of the stream. Its value corresponds to the creation order of the stream, different for each
type.

type The type of the stream, it can be UXR_BEST_EFFORT_STREAM or UXR_RELIABLE_STREAM.

direction Represents the direction (input or output) of the stream. It can be UXR_INPUT_STREAM or
UXR_OUTPUT_STREAM.

uxrStreamId uxr_stream_id_from_raw(uint8_t stream_id_raw, uxrStreamDirection
→˓direction);

This function creates a stream identifier. This function does not create a new stream, it only creates its identifier to be
used in the Client API.

stream_id_raw Identifier of the stream. It goes from 0 to 255. 0 is for internal library use. 1 to 127 are
for best effort. 128 to 255 are for reliable.

direction Represents the direction (input or output) of the stream. It can be UXR_INPUT_STREAM or
MT_OUTPUT_STREAM.

72 Chapter 5. Structure of the documentation

MicroXRCE-DDS Documentation, Release 2.1.1

uxrObjectId uxr_object_id(uint16_t id, uint8_t type);

This function creates an identifier to reference an entity.

id Identifier of the object, different for each type. There can be several objects with the same ID,
provided they have different types.

type The type of the entity. It can be: UXR_PARTICIPANT_ID, UXR_TOPIC_ID,
UXR_PUBLISHER_ID, UXR_SUBSCRIBER_ID, UXR_DATAWRITER_ID,
UXR_DATAREADER_ID, UXR_REQUESTER_ID, or UXR_REPLIER_ID.

bool uxr_ping_agent_session(struct uxrSession* session, const int timeout_ms, const
→˓uint8_t attempts);

This function pings a Micro XRCE-DDS Agent to check if it is already up and running.

This method does require an XRCE session to be established beforehand. Internally it spins the session until ping
answer is received or it timeouts.

It returns true if a response was received from the Agent, false otherwise.

session A pointer to a properly initialized XRCE-DDS session, used to send the ping request.

timeout_ms The maximum time that the Client will wait to receive the answer (pong) message, before
returning.

attempts Maximum amount of times that the Client will try to ping the Agent and receive a response
back.

bool uxr_ping_agent(const uxrCommunication* comm, const int timeout_ms);

This function pings a Micro XRCE-DDS Agent to check if it is already up and running.

This method does not require an XRCE session to be established beforehand. It acts directly over the transport layer
so if a session is running simultaneouly, data can be loss.

It returns true if a response was received from the Agent, false otherwise.

comm A pointer to a properly initialized XRCE-DDS communication structure, used to send the ping
request.

timeout_ms The maximum time that the Client will wait to receive the answer (pong) message, before
returning.

bool uxr_ping_agent_attempts(const uxrCommunication* comm, const int timeout_ms,
→˓const uint8_t attempts);

This function provides the same functionality as the method described in uxr_ping_agent, but allows to specify
the number of ping attempts before returning a value.

comm A pointer to a properly initialized XRCE-DDS communication structure, used to send the ping
request.

timeout_ms The maximum time per attempt that the Client will wait to receive the answer (pong)
message, before returning.

5.9. API 73

MicroXRCE-DDS Documentation, Release 2.1.1

attempts Maximum amount of times that the Client will try to ping the Agent and receive a response
back.

Transport

These functions are platform-dependent. The declaration of these functions can be found in the uxr/client/
profile/transport/ folder. The common init transport functions follow the nomenclature below.

bool uxr_init_udp_transport(uxrUDPTransport* transport, uxrIpProtocol ip_protocol,
→˓const char* ip, const char* port);

This function initializes a UDP connection.

transport The uninitialized structure used for managing the transport. This structure must be accessible
during the connection.

ip_protocol IPv4 or IPv6.

ip Agent IP.

port Agent port.

bool uxr_init_tcp_transport(uxrTCPTransport* transport, uxrIpProtocol ip_protocol,
→˓const char* ip, const char* port);

This function initializes a TCP connection. In the case of TCP, the behaviour of best-effort streams is similar to that
of reliable streams in UDP.

transport The uninitialized structure used for managing the transport. This structure must be accessible
during the connection.

ip_protocol IPv4 or IPv6.

ip Agent IP.

port Agent port.

bool uxr_init_serial_transport(uxrSerialTransport* transport, const int fd, uint8_t
→˓remote_addr, uint8_t local_addr);

This function initializes a Serial connection using a file descriptor.

transport The uninitialized structure used for managing the transport. This structure must be accessible
during the connection.

fd File descriptor of the serial connection. Usually, the fd comes from the open OS function.

remote_addr Identifier of the Agent in the connection. By default, the Agent identifier in a seria connec-
tion is 0.

local_addr Identifier of the Client in the serial connection.

74 Chapter 5. Structure of the documentation

MicroXRCE-DDS Documentation, Release 2.1.1

bool uxr_init_can_transport(uxrCANTransport* transport, const char* dev, uint32_t can_
→˓id);

This function initializes a CAN FD connection using a network interface.

transport The uninitialized structure used for managing the transport. This structure must be accessible
during the connection.

dev Interface name of the CAN FD bus.

can_id Can identifier of this Client.

Note: The used interface must support CAN FD frames with a maximum payload of 64 bytes. The can identifier will
be used on the CAN frames and should be unique for each client.

bool uxr_init_custom_transport(uxrCustomTransport* transport, void * args);

This function initializes a Custom connection using user-defined arguments.

transport The uninitialized structure used for managing the transport. This structure must be accessible
during the connection. args is accesible as transport->args.

bool uxr_close_PROTOCOL_transport(PROTOCOLTransport* transport);

This function closes a transport previously opened. PROTOCOL can be udp, tcp, serial, can or custom.

transport The structure used for managing the transport that must be closed.

void uxr_set_custom_transport_callbacks(uxrCustomTransport* transport, bool framing,
→˓open_custom_func open,

close_custom_func close, write_custom_func write, read_
→˓custom_func read);

This function assigns the callback for custom transport.

transport The uninitialized structure used for managing the transport. This structure must be accessible
during the connection.

framing Enables or disables Stream Framing Protocol for a custom transport.

open Callback for opening a custom transport.

close Callback for closing a custom transport.

write Callback for writing to a custom transport.

read Callback for reading from a custom transport.

The function signatures for the above callbacks are:

typedef bool (*open_custom_func) (struct uxrCustomTransport* transport);

transport Custom transport structure. Has the args passed through bool
uxr_init_custom_transport(uxrCustomTransport* transport, void *
args);.

5.9. API 75

MicroXRCE-DDS Documentation, Release 2.1.1

typedef bool (*close_custom_func) (struct uxrCustomTransport* transport);

transport Custom transport structure. Has the args passed through bool
uxr_init_custom_transport(uxrCustomTransport* transport, void *
args);.

typedef size_t (*write_custom_func) (struct uxrCustomTransport* transport, const
→˓uint8_t* buffer, size_t length, uint8_t* error_code);

transport Custom transport structure. Has the args passed through bool
uxr_init_custom_transport(uxrCustomTransport* transport, void *
args);.

buffer Buffer to be sent.

length Length of buffer.

error_code Error code that should be set in case the write process experiences some error.

This function should return the number of successfully sent bytes.

typedef size_t (*read_custom_func) (struct uxrCustomTransport* transport, uint8_t*
→˓buffer, size_t length, int timeout, uint8_t* error_code);

transport Custom transport structure. Has the args passed through bool
uxr_init_custom_transport(uxrCustomTransport* transport, void *
args);.

buffer Buffer to write.

length Maximum length of buffer.

timeout Maximum timeout of the read operation.

error_code Error code that should be set in case the write process experiences some error.

This function should return the number of successfully received bytes.

5.9.2 Agent API

The Micro XRCE-DDS Agent is developed using a fully compliant C++11 API. This allowed to focus its development
on modularity and usability, while keeping it simple for the final user.

Keeping up with this philosophy, the API provided to the user attempts to be as much intuitive as possible, while
allowing to configure all the different aspects related to the Agent’s behaviour.

That being said, most user will find out that, with te provided MicroXRCEAgent standalone application, it is more than
enough to launch an Agent and start the communication process with Micro XRCE-DDS Client applications. This is
possible thanks to the intuitive built-in Agent CLI and its multiple configuration parameters.

Alternatively, users can access the underneath Agent implementation and fine-tune all of its parameters, options, and
behaviour in their final application. This is specially useful when dealing with a Custom Transport implementation.

The Agent API section is organized as follows:

• eprosima::uxr::AgentInstance

• eprosima::uxr::Agent

76 Chapter 5. Structure of the documentation

MicroXRCE-DDS Documentation, Release 2.1.1

eprosima::uxr::AgentInstance

The CLI manager, along with all the built-in Agents available for the supported transports (UDP, TCP, Serial, CAN)
are encapsulated in the eprosima::uxr::AgentInstance class.

AgentInstance& getInstance();

This function gets a reference to the singleton AgentInstance wrapper class, which allows launching a Micro
XRCE-DDS Agent with user-given parameters.

bool create(int argc, char** argv);

This function creates a UDP/TCP/Serial/CAN Micro XRCE-DDS Agent, based on the given arguments. The created
Agent will start automatically on success.

Returns true if the arguments were valid and an Agent was successfully created, false otherwise.

argc Number of arguments provided by the user via the CLI. This is usually inherited from the main
loop.

argv List of arguments to be parsed by the CLI engine.

void run();

This function blocks until the previously created Agent is ended by the stop function, a user’s interrupt or a process
error.

void stop();

Stops a previously created Agent, blocking until the stop process is completed. Note that this will trigger a call on the
transport::fini method.

To restart a stopped agent, the create method should be used.

template <typename ... Args>
void add_middleware_callback(const Middleware::Kind& middleware_kind, const
→˓middleware::CallbackKind& callback_kind, std::function<void (Args ...)>&& callback_
→˓function);

This function sets a user-defined callback function for a specific create/delete middleware entity operation.

middleware_kind Enum defining all the supported middlewares (see Middleware Abstraction Layer).

callback_kind Enum holding all the possible create/delete operations:

enum class CallbackKind : uint8_t
{

CREATE_PARTICIPANT,
CREATE_DATAWRITER,
CREATE_DATAREADER,

(continues on next page)

5.9. API 77

MicroXRCE-DDS Documentation, Release 2.1.1

(continued from previous page)

CREATE_REQUESTER,
CREATE_REPLIER,
DELETE_PARTICIPANT,
DELETE_DATAWRITER,
DELETE_DATAREADER,
DELETE_REQUESTER,
DELETE_REPLIER

};

callback_function Callback to be defined by the user. It must follow a certain signature, depending on
the middleware used.

eprosima::uxr::Agent

However, it is also possible for users to create and instantiate their own Agent, for example, to implement a Custom
transport. Also, in some scenarios, it could be useful to have all the necessary ProxyClients and their associated
DDS entities created by the Agent even before Clients are started, so that Clients applications can avoid the process of
creating the session and the DDS entities, and can focus on the communication.

This would allow a Micro XRCE-DDS Client application to be as tiny as it can be in terms of memory consumption.

The following API is provided to fulfill these requirements:

bool create_client(uint32_t key, uint8_t session, uint16_t mtu, Middleware::Kind
→˓middleware_kind, OpResult& op_result);

This function allows to create a ProxyClient entity, which can act on behalf of an external Client to request the
creation/deletion of DDS entities.

It returns true if the creation was successful, false otherwise.

key The ProxyClient’s identifier.

session The session ID to which the created ProxyClient is attached to.

mtu The Maximum Transmission Unit size.

middleware_kind The middleware used by the ProxyClient, to be chosen among the ones presented
in the Middleware Abstraction Layer.

op_result The result status of this operation.

bool delete_client(uint32_t key, OpResult& op_result);

This function deletes a given ProxyClient from the client proxy database, given its ID.

Returns true if the operation was completed successfully, false otherwise (for example, if the provided ID was
not registered to any ProxyClient).

key The identifier of the ProxyClient to be removed.

op_result The result status of the operation.

78 Chapter 5. Structure of the documentation

MicroXRCE-DDS Documentation, Release 2.1.1

bool create_participant_by_xml(uint32_t client_key, uint16_t participant_id, int16_t
→˓domain_id, const char* xml, uint8_t flag, OpResult& op_result);

This function creates a DDS participant for a given Client, given its self-contained description in an XML file.

The participant will act as an entry point for the rest of the DDS entities to be created.

It returns true if the creation was successful, false otherwise.

client_key The identifier of the ProxyClient to which the resulting participant will be attached to.

participant_id The identifier of the participant to be created.

domain_id The DDS domain ID associated to the participant.

xml The XML describing the participant properties.

flag It determines the creation mode of the new participant (see Creation Mode: Client and Creation
Mode: Agent).

op_result The result status of this operation.

bool create_participant_by_ref(uint32_t client_key, uint16_t participant_id, int16_t
→˓domain_id, const char* ref, uint8_t flag, OpResult& op_result);

This function creates a DDS participant for a given Client, given a reference to its description hosted in a certain XML
descriptor file.

This reference file must have been previously loaded to the Agent.

The participant will act as an entry point for the rest of the DDS entities to be created.

Returns true if the creation was successful, false otherwise.

client_key The identifier of the ProxyClient to which the resulting participant will be attached to.

participant_id The identifier of the participant to be created.

domain_id The DDS domain ID associated to the participant.

ref The reference tag which will retrieve the participant description from the file where the references are
defined, previously loaded to the Agent.

flag It determines the creation mode of the new participant (see Creation Mode: Client and Creation
Mode: Agent).

op_result The result status of this operation.

bool delete_participant(uint32_t client_key, uint16_t participant_id, OpResult& op_
→˓result);

This function removes a DDS participant from a certain client proxy. Returns true if the participant was deleted,
false otherwise.

client_key The identifier of the ProxyClient from which the participant must be deleted.

participant_id The ID of the participant to be deleted.

op_result The result status of the operation.

5.9. API 79

MicroXRCE-DDS Documentation, Release 2.1.1

bool create_<entity>_by_xml(uint32_t client_key, uint16_t <entity>_id, uint16_t
→˓<associated_entity>_id, const char* xml, uint8_t flag, OpResult& op_result);

This function creates a certain DDS entity attached to an existing ProxyClient, given its client key.

An XML must be provided, containing the DDS description of the entity to be created.

There are as many methods available as existing DDS entities, replacing the parameters <entity> and <associ-
ated_entity> as follows:

Agent’s API available DDS entities and their associated entities

<entity> <associated_entity>
topic participant
publisher participant
subscriber participant
datawriter publisher
datareader subscriber
requester participant
replier participant

This operation returns true if the entity is successfully created and linked to its associated entity (which must previ-
ously exist in the given ProxyClient), false otherwise.

client_key The identifier of the ProxyClient to which the resulting entity will be attached to.

<entity>_id The ID of the DDS entity to be created.

<associated_entity>_id The identifier of the DDS entity to which this one will be assocciated.

xml The XML describing the entity properties.

flag It determines the creation mode of the new entity (see see Creation Mode: Client and Creation
Mode: Agent).

op_result The result status of this operation.

bool create_<entity>_by_ref(uint32_t client_key, uint16_t <entity>_id, uint16_t
→˓<associated_entity>_id, const char* ref, uint8_t flag, OpResult& op_result);

This function creates a certain DDS entity attached to an existing ProxyClient, given its client key.

The description of the entity to be created is hosted in a certain file where all the required references are defined, and
must be tagged with the same tag name, provided as the ref parameter to this method.

There are as many methods available as existing DDS entities, replacing the parameters <entity> and <associ-
ated_entity> as shown above in the previous method description (see Agent’s API available DDS entities and their
associated entities).

This operation returns true if the entity is successfully created and linked to its associated entity (which must previ-
ously exist in the given ProxyClient), false otherwise.

client_key The identifier of the ProxyClient to which the resulting entity will be attached to.

<entity>_id The ID of the DDS entity to be created.

<associated_entity>_id The identifier of the DDS entity to which this one will be assocciated.

80 Chapter 5. Structure of the documentation

MicroXRCE-DDS Documentation, Release 2.1.1

ref The reference tag which will retrieve the DDS entity description from the file hosting the referenced
entities definitions.

flag It determines the creation mode of the new entity (see see Creation Mode: Client and Creation
Mode: Agent).

op_result The result status of this operation.

bool delete_<entity>(uint32_t client_key, uint16_t <entity>_id, OpResult& op_result);

This function deletes a certain entity from a ProxyClient. Its associated entities will also be deleted, if applicable.

There exist as many method signatures of this type in the agent’s API as available entities. See the Agent’s API
available DDS entities and their associated entities table for further information.

It returns true if the entity is correctly removed, false otherwise.

client_key The identifier of the ProxyClient from which the entity must be deleted.

<entity>_id The ID of the DDS entity to be deleted.

op_result The result status of the operation.

bool load_config_file(const std::string& file_path);

This function loads a configuration file that provides the tagged XML definitions of the desired XRCE entities that can
be created using the reference creation mode (see see Creation Mode: Client and Creation Mode: Agent).

The used syntax must match the one defined for FastDDS XML profile syntax, where the profile name attributes
represent the reference names.

It returns true if the file was correctly loaded, false otherwise.

file_path Relative path to the file containing the DDS entities description in XML format, tagged accord-
ingly to be referenced by the API.

Note: This function needs to be called when implementing a Custom transport in the case creation of entities by
reference is used. This function must be called before eprosima::uxr::Server start method.

void reset();

This function deletes all the ProxyClient instances and their associated DDS entities.

void set_verbose_level(uint8_t verbose_level);

This function sets the verbose level of the logger, from 0 (logger is off) to 6 (critical, error, warning, info, debug, and
trace messages are displayed).

Intermediate tracing levels display information up to the position in the aforementioned list; for example, level 4 shows
critical, error, warning and info messages.

Note: This function must be called before eprosima::uxr::Server start method.

5.9. API 81

https://fast-dds.docs.eprosima.com/en/latest/fastdds/xml_configuration/xml_configuration.html

MicroXRCE-DDS Documentation, Release 2.1.1

verbose_level The level to be set.

template <typename ... Args>
void add_middleware_callback(const Middleware::Kind& middleware_kind, const
→˓middleware::CallbackKind& callback_kind, std::function<void (Args ...)>&& callback_
→˓function);

This function exposes the same functionality as the one described in add_middleware_callback, for
eprosima::uxr::AgentInstance.

Note: This function must be called before eprosima::uxr::Server start method.

eprosima::uxr::Server

This class inherits from eprosima::uxr::Agent and it is the base class used for implementing any of the built-in Agent
servers that are available by default in the standalone executable that is generated when the library is compiled and
installed (see Installation Manual), and that can be launched and used by means of the built-in Agent CLI.

Also, when creating a Custom Agent, which inherits directly from eprosima::uxr::Server users will need to
call the start() method after configuring the Agent, if applicable (namely, by using load_config_file,
set_verbose_level or add_middleware_callback methods). An example on how to do this can be found
here.

bool start();

Launches the threads involved in the Agent server communication, namely, receiver and sender thread for get-
ting/dispatching messages; processing thread, to process the messages; and a heartbeat and an error handler thread.
After calling this method, the communication between the Agent and the Clients can effectively start.

This method returns true if the server has been correctly started, or false if some error happened during startup.

bool stop();

Stops a previously launched eprosima::uxr::Server and all of its associated threads.

This method returns true if the stopping process was successful, or false otherwise.

5.10 eProsima Micro XRCE-DDS Gen

eProsima Micro XRCE-DDS Gen is a Java application used to generate source code for the eProsima Micro XRCE-
DDS software.

This tool can generate from a given IDL specification file, the C struct associated with the Topic, as well as the
serialization and deserialization methods. Also, it can generate a sample demo that works with the proposed topic.

To find out how to install this package, refer to the Installing the Micro XRCE-DDS Gen tool section.

As an example of the potential of this tool, the following shows the source code generated from the ShapeDemo IDL
file.

82 Chapter 5. Structure of the documentation

https://github.com/eProsima/Micro-XRCE-DDS-Agent/blob/develop/examples/custom_agent/custom_agent.cpp#L234

MicroXRCE-DDS Documentation, Release 2.1.1

// ShapeType.idl

struct ShapeType {
@key string color;
long x;
long y;
long shapesize;

};

If we will perform the following command:

$ microxrceddsgen ShapeType.idl

it will generate the following header file and its corresponding source:

/*!

* @file ShapeType.h

* This header file contains the declaration of the described types in the IDL file.

*
* This file was generated by the tool gen.

*/

#ifndef _ShapeType_H_
#define _ShapeType_H_

#include <stdint.h>
#include <stdbool.h>

/*!

* @brief This struct represents the structure ShapeType defined by the user in the
→˓IDL file.

* @ingroup SHAPETYPE

*/
typedef struct ShapeType
{

char color[255];
int32_t x;
int32_t y;
int32_t shapesize;

} ShapeType;

struct ucdrBuffer;

bool ShapeType_serialize_topic(struct ucdrBuffer* writer, const ShapeType* topic);
bool ShapeType_deserialize_topic(struct ucdrBuffer* reader, ShapeType* topic);
uint32_t ShapeType_size_of_topic(const ShapeType* topic, uint32_t size);

#endif // _ShapeType_H_

eProsima Micro XRCE-DDS Gen is also able to generate both publisher and subscriber source code examples, related
with the topic specified in the IDL file, by adding the flag -example:

$ microxrceddsgen -example <file.idl>

The Client library must be compiled with the WRITE_ACCESS_PROFILE option for the publisher, to use these
examples and the READ_ACCESS_PROFILE option for the subscriber.

5.10. eProsima Micro XRCE-DDS Gen 83

MicroXRCE-DDS Documentation, Release 2.1.1

Note: At present, eProsima Micro XRCE-DDS Gen only supports Structs composed of integer, string, array and
sequence types, even though it is planned to enhance the capabilities of the eProsima Micro XRCE-DDS Gen tool in a
near future.

5.11 Memory optimization

This section explains how memory is managed by the eProsima Micro XRCE-DDS library and how it can be configured
and customized by the user. For more information regarding the internal handling of the memory in eProsima Micro
XRCE-DDS, refer to the detailed analysis and memory profiling here.

5.11.1 Executable code size

To tune the executable code size, the library can be compiled enabling or disabling several profiles. To add or remove
profiles from the library, enable or disable them as CMake arguments. More information can be found at: eProsima
Micro XRCE-DDS Client.

Important: When compiling with gcc, it is highly recommended to compile it with the linker flag: -Wl,
--gc-sections. It will remove the code that the app doesn’t use from the final executable.

5.11.2 Runtime size

The Client is dynamic and static memory free: the whole memory footprint only depends on how the stack grows
during the execution. Several values can be modified to control the stack growth:

Stream buffers

Streams number It’s possible to define a maximum of 127 best-effort streams and of 128 reliable streams. However,
for most purposes, only one stream - either best effort or reliable - is needed.

History of a reliable stream The history is used for recovering lost messages and for speeding up the communica-
tion. For output streams, a bigger history will allow writing and sending more messages without having to wait
for confirmation. However, if the history of an output stream is full (no messages confirmed by the Agent yet),
no more messages can be stored in the stream. For input streams, the history is used for recovering lost mes-
sages faster while reducing the bandwidth. If the connection is highly reliable and saving memory is a priority,
a reduced history can be used.

Stream size In case of reliable communication, this size is equal to MAX_MESSAGE_SIZE * HISTORY. In case
of a best-effort stream, the size simply equals MAX_MESSAGE_SIZE, as no history is made available in this
case. The MAX_MESSAGE_SIZE represents the maximum message size that can be sent without fragmenting
the message, and it must be less or equal than the MTU chosen for the selected transport.

MTU A different MTU can be chosen for each transport available. The MTU value can be defined as a CMake
argument, and fixes the MAX_MESSAGE_SIZE that can be sent or received. The transport uses the MTU value
to create an internal buffer.

84 Chapter 5. Structure of the documentation

https://www.eprosima.com/index.php/resources-all/performance/micro-xrce-dds-memory-profiling

MicroXRCE-DDS Documentation, Release 2.1.1

5.12 Transport

This section shows how the transport layer is implemented in both eProsima Micro XRCE-DDS Agent and eProsima
Micro XRCE-DDS Client. Furthermore, this section describes how to add a Custom transport in eProsima Micro
XRCE-DDS. It is organized as follows:

• Introduction

• Agent Transport Architecture

• Client Transport Architecture

• Stream Framing Protocol

• Custom Transport

5.12.1 Introduction

In contrast to other IoT middlewares such as MQTT and CoaP, which work over a particular transport protocol, the
DDS-XRCE protocol is designed to support multiple transport protocols natively. This feature of DDS-XRCE is
enhanced by eProsima Micro XRCE-DDS in two ways. On the one hand, the logic of both the Agent and the Client
is completely separated from the transport protocol underneath through a set of interfaces, which will be explained in
the following sections.

On the other hand, taking advantage of the transport interface flexibility, the Client comes with a framing protocol
implemented that enables using the DDS-XRCE wire protocol over stream-oriented transports. This feature allows
using eProsima Micro XRCE-DDS over two kinds of transports layers:

• Packet-oriented transports: communication protocols that allow sending whole packets.

• Stream-oriented transports: communication protocols that follow a stream logic.

5.12.2 Agent Transport Architecture

The Agent transport architecture is composed by 3 different layers:

Server Server Layer

Transport Layer

Platform Layer

UDP TCP Serial

Linux Windows ...

• Server Layer: is an interface from which each transport-specific server inherits. This interface implements four
different threads:

– Sender thread: in charge of sending the messages to the Clients.

– Receiver thread: in charge of receiving the messages from the Clients.

– Processing thread: in charge of processing the messages received from the Clients.

– Heartbeat thread in charge of handling reliability with the Clients.

• Transport Layer: is a transport-specific class which manages the sessions established between the Agent and
the Clients. This class inherits from the Server interface.

5.12. Transport 85

MicroXRCE-DDS Documentation, Release 2.1.1

• Platform Layer: is a platform-specific class which implements the sending and receiving functions for a given
transport in a given platform. It should be noted that it is the only class that has platform dependencies.

UDP Server Example

As an example, this subsection describes how the UDP server is implemented in eProsima Micro XRCE-DDS Agent.
The figure below shows the Agent transport architecture for the UDP servers.

86 Chapter 5. Structure of the documentation

MicroXRCE-DDS Documentation, Release 2.1.1

server layer

transport layer

platform layer

Server

virtual void on_create_client() = 0
virtual void on_delete_client() = 0
virtual ClientKey get_client_key() = 0
virtual EndPoint get_source() = 0

virtual bool init() = 0
virtual bool close() = 0
virtual bool recv_message() = 0
virtual bool send_message() = 0
virtual int get_error() = 0

UDPServerBase

void on_create_client() override
void on_delete_client() override
virtual ClientKey get_client_key() = 0
virtual EndPoint get_source() = 0

UDPServerLinux

bool init() override
bool close() override
bool recv_message() override
bool send_message() override
int get_error() override

UDPServerWindows

bool init() override
bool close() override
bool recv_message() override
bool send_message() override
int get_error() override

At the top of this architecture, there is a Server interface (Server Layer). This Server interface has the following
pure virtual functions:

/* Transport Layer */
virtual void on_create_client(EndPoint* source, const dds::xrce::ClientKey& client_
→˓key) = 0;
virtual void on_delete_client(EndPoint* source) = 0;

(continues on next page)

5.12. Transport 87

MicroXRCE-DDS Documentation, Release 2.1.1

(continued from previous page)

virtual const dds::xrce::ClientKey get_client_key(EndPoint* source) = 0;
virtual std::unique_ptr<EndPoint> get_source(const dds::xrce::ClientKey& client_key)
→˓= 0;

/* Platform Layer */
virtual bool init() = 0;
virtual bool close() = 0;
virtual bool recv_message(InputPacket& input_packet, int timeout) = 0;
virtual bool send_message(OutputPacket output_packet) = 0;
virtual int get_error() = 0;

The first four virtual functions are transport specific (Transport Layer). These functions are overridden by the
UDPServerBase class, which is in charge of managing the sessions between Clients and the Agent.

On the other hand, the last five virtual functions are platform specific (Platform Layer). These functions are override
by the UDPServerLinux and UDPServerWindows for Linux and Windows systems, respectively.

5.12.3 Client Transport Architecture

The Client transport architecture is analogous to the Agent architecture. There are also three different layers, but
instead of the Server Layer, there is a Session Layer.

Session Session Layer

Transport Layer

Platform Layer

UDP TCP Serial

Linux Windows ···

• Session Layer: implements the XRCE protocol logic, and it only knows about sending and receiving messages.

• Transport Layer: implements the sending and receiving message functions for each transport protocol, calling
to the Platform Layer functions. This layer only knows about sending and receiving messages through a given
transport protocol.

• Platform Layer: implements the sending and receiving data functions for each platform. This layer only
knows about sending and receiving raw data through a given transport in a given platform.

UDP Transport Example

As an example, this subsection describes how the UDP transport is implemented in eProsima Micro XRCE-DDS
Client. The figure below shows the Client transport architecture for UDP transport.

88 Chapter 5. Structure of the documentation

MicroXRCE-DDS Documentation, Release 2.1.1

session layer

transport layer

platform layer

uxrCommunication

void* instance
uint16_t mtu

virtual bool send_msg_func() = 0
virtual bool recv_msg_func() = 0
virtual uint8_t comm_error_func() = 0

uxrUDPTransport

uxrCommunication comm
uxrUDPPlatform* platform
uint8_t buffer[mtu_size]

bool send_udp_message() override
bool recv_udp_message() override
bool get_udp_error() override

bool uxr_init_udp_transport()
bool uxr_close_udp_transport()

virtual bool uxr_init_udp_platform() = 0
virtual bool uxr_close_udp_platform() = 0
virtual size_t uxr_write_udp_data_platform() = 0
virtual size_t uxr_read_udp_data_platform() = 0

uxrUDPPlatform <<Linux>>

struct sockaddr remote_addr
struct pollfd poll_fd

bool uxr_init_udp_platform() override
bool uxr_close_udp_platform() override
size_t uxr_write_udp_data_platform() override
size_t uxr_read_udp_data_platform() override

uxrUDPPlatform <<Windows>>

struct sockaddr remote_addr
WSAPOLLFD pollfd poll_fd

bool uxr_init_udp_platform() override
bool uxr_close_udp_platform() override
size_t uxr_write_udp_data_platform() override
size_t uxr_read_udp_data_platform() override

Similar to the Agent architecture, there is also an interface, uxrCommunication, whose function pointers are used
from the Session Layer. That is, each time a run_session is called, the Session Layer calls to send_msg_func
and recv_msg_func without worrying about the transport protocol or the platform in use. This struct has the
following function pointers:

bool send_msg_func(void* instance, const uint8_t* buf, size_t len);
bool recv_msg_func(void* instance, uint8_t** buf, size_t* len, int timeout);
uint8_t comm_error_func(void);

These functions are implemented by the uxrUDPTransport, which is in charge of two main tasks:

1. Provide an implementation for the communication interface functions. For example, in the case of the UDP
protocol, these functions are the following:

bool send_udp_msg(void* instance, const uint8_t* buf, size_t len);
bool recv_udp_msg(void* instance, uint8_t** buf, size_t* len, int timeout);

(continues on next page)

5.12. Transport 89

MicroXRCE-DDS Documentation, Release 2.1.1

(continued from previous page)

uint8_t get_udp_error(void);

2. Offer to the user the initialization and close functions related to the transport protocol. For example, in the case
of the UDP protocol, these functions are the following:

bool uxr_init_udp_transport(uxrUDPTransport* transport, const char* ip, uint8_t port);
bool uxr_close_udp_transport(uxrUDPTransport* transport);

For each platform, there is an implementation of these functions defined in the Transport Layer interface. For example,
in the case of Linux under UDP transport protocol, the uxrUDPPlatform implements the following functions:

bool uxr_init_udp_platform(uxrUDPPlatform* platform, const char* ip, uint16_t port);
bool uxr_close_udp_platform(uxrUDPPlatform* platform);
size_t uxr_write_udp_data_platform(uxrUDPPlatform* platform, const uint8_t* buf, size_
→˓t len, uint8_t* errcode);
size_t uxr_read_udp_data_platform(uxrUDPPlatform* platform, uint8_t* buf, size_t len,
→˓int timeout, uint8_t* errcode);

5.12.4 Stream Framing Protocol

eProsima Micro XRCE-DDS has a Stream Framing Protocol with the following features:

• HDLC Framing: each frame begins with a begin_frame octet (0x7E), and the rest of the frame undergoes
byte stuffing, using the space octet (0x7D) followed by the original octet exclusive-or with 0x20. For
example, if the frame contains the octet 0x7E, it is encoded as 0x7D, 0x5E; and the same for the octet 0x7D
which is encoded as 0x7D, 0x5D.

• CRC Calculation: frames end with the CRC-16 for detecting frame corruption. The CRC-16 is computed using
the polynomial x^16 + x^12 + x^5 + 1 after the frame stuffing for each octet of the frame and including
the begin_frame, as it is described in the RFC 1662 (see sec. C.2).

• Routing header: the Stream Framing Protocol provides source and remote addresses in the framing, which
can be used to implement a routing protocol.

All the previous features are addressed using the following frame format:

0 8 16 24 40 X X+16
+--------+--------+--------+--------+--------+--------//--------+--------+--------+
| FLAG | SADD | RADD | LEN | PAYLOAD | CRC |
+--------+--------+--------+--------+--------+--------//--------+--------+--------+

• FLAG: is a begin_frame octet for frame initialization.

• SADD: is the address of the device which sent the message, that is, the source address.

• RADD: is the address of the device which should receive the message, that is, the remote address.

• LEN: is the length of the payload without framing. It is encoded as a 2-bytes array in little-endian.

• PAYLOAD: is the payload of the message.

• CRC: is the CRC of the message after the stuffing.

90 Chapter 5. Structure of the documentation

https://tools.ietf.org/html/rfc1662

MicroXRCE-DDS Documentation, Release 2.1.1

Data Sending

The figure below shows the workflow of the data sending. This workflow could be divided into the following steps:

1. A publisher application calls the Client library to send a given topic.

2. The Client library serializes the topic inside an XRCE message using Micro CDR. As a result, the XRCE
message with the topic is stored in an Output Stream Buffer.

3. The Client library calls the Stream Framing Protocol to send the serialized message.

4. The Stream Transport frames the message, that is, it adds the header, the payload, and CRC of the frame, taking
into account the stuffing. This step takes place in an auxiliary buffer called Framing Buffer.

5. Each time the Framing Buffer is full, the data is flushed into the Device Buffer, calling the writing system
function.

Topic

Serialization

Output Stream Buffer

Send

Framing

Framing Buffer

Write

Device Buffer

XRCE Protocol Serial Transport System

This approach has some advantages which should be pointed out:

5.12. Transport 91

MicroXRCE-DDS Documentation, Release 2.1.1

1. The HDLC framing and the CRC control provide integrity and security to the Stream Framing.

2. The framing technique allows to reduce memory usage. The reason is that the Framing Buffer size (42 bytes)
bounds the Device Buffer size.

3. The framing technique also allows sending large data over stream-oriented transports. The reason is that the
message size is not bounded by the Device Buffer size, since the message is fragmented and has undergone byte
stuffing during the framing stage.

Data Receiving

The workflow of the data receiving is analogous to the data sending workflow:

1. A subscriber application calls the Client library to receive a given topic.

2. The Client library calls the Stream Framing Protocol to receive the stream message.

3. The Stream Framing Protocol reads data from the Device Buffer and unframes the raw data received from the
Device Buffer in the Unframing Buffer.

4. Once the Unframing Buffer is full, the Stream Framing Protocol appends the fragment into the Input Stream
Buffer. This operation is repeated until a complete message is received.

5. The Client library deserializes the topic from the Input Stream Buffer to the user topic struct.

92 Chapter 5. Structure of the documentation

MicroXRCE-DDS Documentation, Release 2.1.1

Device Buffer

Read

Unframing Buffer

Unframing

Receive

Input Stream Buffer

Deserialization

Topic

System Serial Transport XRCE Protocol

It should point out that this approach has the same advantages that the sending one.

Shapes Topic Example

This subsection shows how a Shapes Topic, defined by the IDL below, is packed into the Serial Transport.

typedef struct ShapeType
{

char color[128];
int32_t x;
int32_t y;
int32_t shapesize;

} ShapeType;

ShapeType topic = {"red", 11, 11, 89};

5.12. Transport 93

MicroXRCE-DDS Documentation, Release 2.1.1

In Serial Transport, the topic’s packaging could be divided into two steps:

1. The Session Layer adds the XRCE header and subheader. It adds an overhead of 12 bytes to the topic.

2. The Serial Transport adds the serial header, CRC and stuffing the payload. In the best case, it adds an overhead
of 7 bytes to the topic.

Serialized Shape Topic (20 B)

Serialized Shape Topic (20 B)

Serial Header (5 B) CRC (2 B)

20 Bytes

32 Bytes

39 BytesSerialized Shape Topic (20 B)XRCE Overhead (12 B)

XRCE Overhead (12 B)

The figure above shows the overhead added by Serial Transport. In the best case, it is only 19 bytes, but it should be
noted that, in this example, the message stuffing has been neglected.

5.12.5 Custom Transport

eProsima Micro XRCE-DDS provides a user API that allows interfacing with the lowest level transport layer at runtime,
which enables users to implement their own transports in both the Client and Agent libraries. Thanks to this, the Micro
XRCE-DDS wire protocol can be transmitted over virtually any protocol, network or communication mechanism. In
order to do so, two general communication modes are provided:

• Stream-oriented mode: the communication mechanism implemented does not have the concept of packet.
HDLC framing (Stream Framing Protocol) will be used.

• Packet-oriented mode: the communication mechanism implemented is able to send a whole packet that in-
cludes an XRCE message.

These two modes can be selected by activating and deactivating the framing parameter in both the Client and the
Agent functions.

The relevant API can be found in the Transport section of the Client API.

Micro XRCE-DDS Client

In order to enable the eProsima Micro XRCE-DDS Client profile for custom transports, the CMake argument
UCLIENT_PROFILE_CUSTOM_TRANSPORT=<bool> must be set to true. By doing so, the user will enable the
functionality for setting the transport-related callbacks explained in the Transport section of the Client API.

An example on how to set these external transport callbacks in the Client API is:

uxrCustomTransport transport;
uxr_set_custom_transport_callbacks(

&transport,
true, // Framing enabled here. Using Stream-oriented mode.
my_custom_transport_open,
my_custom_transport_close,
my_custom_transport_write,

(continues on next page)

94 Chapter 5. Structure of the documentation

MicroXRCE-DDS Documentation, Release 2.1.1

(continued from previous page)

my_custom_transport_read);

struct custom_args {
...

}

struct custom_args args;

if(!uxr_init_custom_transport(&transport, (void *) &args))
{

printf("Error at create transport.\n");
return 1;

}

It is important to notice that in uxr_init_custom_transport a pointer to custom arguments is set. This refer-
ence will be copied to the uxrCustomTransport and will be available to every callbacks call.

In general, four functions need to be implemented. The behavior of these functions is sightly different, depending on
the selected mode:

Open function

bool my_custom_transport_open(uxrCustomTransport* transport)
{

...
}

This function should open and init the custom transport. It returns a boolean indicating if the opening was
successful.

transport->args have the arguments passed through uxr_init_custom_transport.

Close function

bool my_custom_transport_close(uxrCustomTransport* transport)
{

...
}

This function should close the custom transport. It returns a boolean indicating if closing was successful.

transport->args have the arguments passed through uxr_init_custom_transport.

Write function

size_t my_custom_transport_write(
uxrCustomTransport* transport,
const uint8_t* buffer,
size_t length,
uint8_t* errcode)

{
...

}

This function should write data to the custom transport. It returns the number of Bytes written.

transport->args have the arguments passed through uxr_init_custom_transport.

• Stream-oriented mode: The function can send up to length Bytes from buffer.

5.12. Transport 95

MicroXRCE-DDS Documentation, Release 2.1.1

• Packet-oriented mode: The function should send length Bytes from buffer. If less than length
Bytes are written errcode can be set.

Read function

size_t my_custom_transport_read(
uxrCustomTransport* transport,
uint8_t* buffer,
size_t length,
int timeout,
uint8_t* errcode)

{
...

}

This function should read data to the custom transport. It returns the number of Bytes read

transport->args have the arguments passed through uxr_init_custom_transport.

• Stream-oriented mode: The function should retrieve up to length Bytes from transport and write them
into buffer in timeout milliseconds.

• Packet-oriented mode: The function should retrieve length Bytes from transport and write them into
buffer in timeout milliseconds. If less than length Bytes are read errcode can be set.

Micro XRCE-DDS Agent

The eProsima Micro XRCE-DDS Agent profile for custom transports is enabled by default.

An example on how to set the external transport callbacks in the Micro XRCE-DDS Agent API is:

eprosima::uxr::Middleware::Kind mw_kind(eprosima::uxr::Middleware::Kind::FASTDDS);
eprosima::uxr::CustomEndPoint custom_endpoint;

// Add transport endpoing parameters
custom_endpoint.add_member<uint32_t>("param1");
custom_endpoint.add_member<uint16_t>("param2");
custom_endpoint.add_member<std::string>("param3");

eprosima::uxr::CustomAgent custom_agent(
"my_custom_transport",
&custom_endpoint,
mw_kind,
true, // Framing enabled here. Using Stream-oriented mode.
my_custom_transport_open,
my_custom_transport_close,
my_custom_transport_write
my_custom_transport_read);

custom_agent.start();

96 Chapter 5. Structure of the documentation

MicroXRCE-DDS Documentation, Release 2.1.1

CustomEndPoint

The custom_endpoint is an object of type eprosima::uxr::CustomEndPoint and it is in charge of han-
dling the endpoint parameters. The Agent, unlike the Client, can receive messages from multiple Clients so it must
be able to differentiate between them. Therefore, the eprosima::uxr::CustomEndPoint should be provided
with information about the origin of the message in the read callback, and with information about the destination of
the message in the write callback.

In general, the members of a eprosima::uxr::CustomEndPoint object can be unsigned integers and strings.

CustomEndPoint defines three methods:

Add member

bool eprosima::uxr::CustomEndPoint::add_member<*KIND*>(const std::string& member_
→˓name);

Allows to dynamically add a new member to the endpoint definition.

Returns true if the member was correctly added, false if something went wrong (for example, if the member
already exists).

KIND To be chosen from: uint8_t, uint16_t, uint32_t, uint64_t, uint128_t or
std::string.

member_name The tag used to identify the endpoint member.

Set member value

void eprosima::uxr::CustomEndPoint::set_member_value(const std::string& member_
→˓name, const *KIND* & value);

Sets the specific value (numeric or string) for a certain member, which must previously exist in the
CustomEndPoint.

member_name The member whose value is going to be modified.

value The value to be set, of KIND: uint8_t, uint16_t, uint32_t, uint64_t,
uint128_t or std::string.

Get member

const *KIND* & eprosima::uxr::CustomEndPoint::get_member(const std::string&
→˓member_name);

Gets the current value of the member registered with the given parameter. The retrieved value might be an
uint8_t, uint16_t, uint32_t, uint64_t, uint128_t or std::string.

member_name The CustomEndPoint member name whose current value is requested.

5.12. Transport 97

MicroXRCE-DDS Documentation, Release 2.1.1

CustomAgent user-defined methods

As in the Client API, four functions should be implemented. The behaviour of these functions is sightly different
depending on the selected mode:

Open function

eprosima::uxr::CustomAgent::InitFunction my_custom_transport_open = [&]() -> bool
{

...
}

This function should open and init the custom transport. It returns a boolean indicating if the opening was
successful.

Close function

eprosima::uxr::CustomAgent::FiniFunction my_custom_transport_close = [&]() -> bool
{

...
}

This function should close the custom transport. It returns a boolean indicating if the closing was successful.

Write function

eprosima::uxr::CustomAgent::SendMsgFunction my_custom_transport_write = [&](
const eprosima::uxr::CustomEndPoint* destination_endpoint,
uint8_t* buffer,
size_t length,
eprosima::uxr::TransportRc& transport_rc) -> ssize_t

{
...

}

This function should write data to the custom transport. It must use the destination_endpoint members
to set the data destination. It returns the number of Bytes written. It should set transport_rc indicating the
result of the operation.

• Stream-oriented mode: The function can send up to length Bytes from buffer.

• Packet-oriented mode: The function should send length Bytes from buffer. If less than length
Bytes are written, transport_rc can be set.

Read function

eprosima::uxr::CustomAgent::RecvMsgFunction my_custom_transport_read = [&](
eprosima::uxr::CustomEndPoint* source_endpoint,
uint8_t* buffer,
size_t length,
int timeout,
eprosima::uxr::TransportRc& transport_rc) -> ssize_t

{
...

}

This function should read data to the custom transport. It must fill source_endpoint members with data
source. It returns the number of Bytes read. It should set transport_rc indicating the result of the operation.

98 Chapter 5. Structure of the documentation

MicroXRCE-DDS Documentation, Release 2.1.1

• Stream-oriented mode: The function should retrieve up to length Bytes from transport and write them
into buffer in timeout milliseconds.

• Packet-oriented mode: The function should retrieve length Bytes from transport and write them into
buffer in timeout milliseconds. If less than length Bytes are read transport_rc can be set.

5.13 P2P Communication

This section illustrates the peer-to-peer communication mode offered by eProsima Micro XRCE-DDS. It is organized
as follows:

• Introduction

• Publish/Subscribe P2P Example

5.13.1 Introduction

The peer-to-peer (P2P) mode allows direct communication between applications without DDS, where by application
is to be understood the combination of an Agent and one or more Clients.

In this communication mode, the Agent uses the CedMiddleware. The Agent is in charge of discovering other External
Agents and create an Internal Client for each one of them. Each Internal Client connects to an External Agent and
subscribes to the set of Topics managed by its own Agent. Thus, a cloud of interconnected Agents is created.

App Foo

Agent Foo

App Bar

Agent Bar App Qux

Agent Qux

Client Foo

Internal Client Bar

Topic Foo

internal Client Qux

Client Bar

Topics Bar

internal Client Qux

internal Client Foo

Client Qux

internal Client Bar

internal Client Foo

Topics Qux

5.13. P2P Communication 99

MicroXRCE-DDS Documentation, Release 2.1.1

Some consideration shall be taken into account in order to use the P2P communication:

1. Only the create_<entity>_by_ref() functions shall be used.

2. The Topic’s reference represents the name of the Topic.

3. The DataWriter’s and DataReader’s references need to match the Topic’s reference.

4. Publishers and Subscribers have no role.

5. Agents use the CedMiddleware and the Discovery mechanism.

5.13.2 Publish/Subscribe P2P Example

This kind of behaviour can be probed by putting in communication a Publisher P2P application with a Subscriber P2P
application.

Agent with CedMiddleware

First of all, install the Agent as explained in the Installing the Agent standalone section. On Linux, this would be:

$ git clone https://github.com/eProsima/Micro-XRCE-DDS-Agent.git
$ cd Micro-XRCE-DDS-Agent
$ mkdir build && cd build
$ cmake ..
$ make
$ sudo make install

After having installed the Agent system-wide, launch it with the ced option activated:

$./MicroXRCEAgent udp4 -p <port> -m ced -d

Client P2P publisher app

Let’s now install the Client locally, and with the -DUCLIENT_BUILD_EXAMPLES=ON flag enabled, so as to activate
the compilation of the examples. On Linux, this implies running the following:

$ git clone https://github.com/eProsima/Micro-XRCE-DDS-Client.git
$ cd Micro-XRCE-DDS-Client
$ mkdir build && cd build
$ cmake .. -DUCLIENT_BUILD_EXAMPLES=ON
$ make

At this point, it’s possible to launch the PublishHelloWorldClientP2P executable located in the folder
Micro-XRCE-DDS-Client/build/examples/PublishHelloWorldP2P, which’ll make the Client pub-
lish in the DDS World the HelloWorld topic (take a look at the IDL defining this topic in the file
Micro-XRCE-DDS-Client/examples/PublishHelloWorldP2P/HelloWorld.idl).

$ examples/PublishHelloWorld2P2/PublishHelloWorldClientP2P 127.0.0.1 2019

The source code of the PublishHelloWorldClientP2P can be found in Micro-XRCE-DDS-Client/
examples/PublishHelloWorldP2P/main.c.

100 Chapter 5. Structure of the documentation

MicroXRCE-DDS Documentation, Release 2.1.1

Client P2P subscriber app

After having executed the publisher app, we can launch the SubscribeHelloWorldClientP2P
excutable, which is located in the folder Micro-XRCE-DDS-Client/build/examples/
SubscribeHelloWorldP2P, which’ll make this Client subscribe to the same HelloWorld topic from
the DDS World.

$ examples/SubscriberHelloWorldP2P/SubscribeHelloWorldClientP2P 127.0.0.1 2019

The source code of the SubscribeHelloWorldClientP2P can be found in Micro-XRCE-DDS-Client/
examples/SubscribeHelloWorldP2P/main.c.

At this point, the subscriber will receive the topics that are being sent by the publisher.

5.14 Time synchronization

eProsima Micro XRCE-DDS offers a synchronization mechanism based on the NTP protocol. It allows synchroniz-
ing Client with Agents, something very useful when working in embedded environments that do not provide any
time synchronization mechanism. The use of this feature is quite simple. The Client library provides the function
uxr_sync_session which is all that is needed. This function involves an exchange of messages between Client
and Agent that allows the Client compute its time offset using the NTP protocol. Apart from it, the Client library also
provides a callback that allows users to implement their time synchronization protocol.

Find the code for a Client application making use of this time synchronization mechanism in the TimeSync example
app.

Another useful example shows how to use the time-synchronization callback. In particular, this example implements
the NTP protocol with average computation to increase the time-offset’s accuracy. Find the code for this example in
the TimeSync with callback example app.

5.15 eProsima Docker Image

eProsima provides the eProsima XRCE-DDS Suite Docker image for those who want a quick demonstration of XRCE-
DDS running on an Ubuntu platform.

This Docker image was built for Ubuntu 20.04 (Focal Fossa).

To run this container you need Docker installed; from a terminal run:

$ sudo apt install docker.io

5.15.1 XRCE-DDS Suite

This Docker image contains the complete XRCE-DDS suite, which includes:

• eProsima XRCE-DDS libraries and examples: XRCE-DDS libraries bundled with several examples that show-
case a variety of capabilities of eProsima’s Fast DDS implementation.

• eProsima XRCE-DDS Agent: eProsima XRCE-DDS Agent is a ready to use implementation of DDS-XRCE
Agent and it is available for using along with provided examples.

To load this image into your Docker repository, run:

5.14. Time synchronization 101

https://github.com/eProsima/Micro-XRCE-DDS-Client/tree/master/examples/TimeSync
https://github.com/eProsima/Micro-XRCE-DDS-Client/tree/master/examples/TimeSync
https://github.com/eProsima/Micro-XRCE-DDS-Client/tree/master/examples/TimeSyncWithCb
https://eprosima.com/index.php/downloads-all

MicroXRCE-DDS Documentation, Release 2.1.1

$ docker load -i xrcedds-suite:<XRCE-DDS-Version>.tar

You can run this Docker container as follows:

$ docker run -it xrcedds-suite:<XRCE-DDS-Version>

From the resulting Bash Shell you can run each feature.

Client Hello World Example

Included in this Docker container is a set of binary examples that showcase some of the functionalities of the XRCE-
DDS libraries.

This is a minimal example that will perform a Publisher/Subscriber match and start sending samples. This example is
not constrained to the current instance. It’s possible to run several instances of this container to check the communi-
cation between them by running the following from each container:

$ docker run -it xrcedds-suite:<XRCE-DDS-Version> helloworld_pub

or

$ docker run -it xrcedds-suite:<XRCE-DDS-Version> helloworld_sub

XRCE-DDS Agent

This command creates an instance of the eProsima XRCE-DDS Agent, required for communicating XRCE-DDS
Client. In order to use it run:

$ docker run -it xrcedds-suite:<XRCE-DDS-Version> xrce_agent [ARGUMENTS]

More information about the eProsima XRCE-DDS Agent CLI can be found here

5.16 Version 2.4.0

Agent 2.4.0 | Client 2.4.0 | Micro-CDR 2.0.1 | Gen 2.0.0

• Agent 2.4.0:

– This release includes the following minor changes:

* Bump internal Micro XRCE-DDS Client to v2.4.0

* Bump Fast DDS to v2.10.0

* Bump Fast CDR to v1.0.27

• Client 2.4.0:

– This release includes the following bugfixes:

* Fix build for macOS (#346)

* Fix newline-eof compiler warning (#347)

* Fix doxygen warning (#352)

* Add missing doxygen parameter (#353)

102 Chapter 5. Structure of the documentation

https://github.com/eProsima/Micro-XRCE-DDS-Agent/releases/tag/v2.4.0
https://github.com/eProsima/Micro-XRCE-DDS-Client/releases/tag/v2.4.0
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/346
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/347
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/352
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/353

MicroXRCE-DDS Documentation, Release 2.1.1

* Fix domain id argument in create_participant API (#348)

– This release includes the following minor changes:

* Add CMAKE configuration for C standard version (#340)

• Micro-CDR 2.0.1:

– This release is not modified

• Gen 2.0.0:

– Adapted generation to Micro XRCE-DDS Client v2.4.0 API.

– This release includes the following minor changes:

* Update gradlew scrip to use Gradle 7 and fix compatibility with Client 2.3.0 (#47)

* Enumerations support (#43)

* Update IDL-Parser dependency to latest master (#59)

* Add case sensitive argument -cs (#61)

* Support of include directories argument -I (#60)

* Add support for modules in examples (#48)

– This release includes the following bugfixes:

* Avoid typedefs from IDL source files (#58)

* Fix C namespaced module includes (#53)

* Consume the bool return type and propagate it outward (#46, #49)

5.17 Version 2.3.0

Agent 2.3.0 | Client 2.3.0 | Micro-CDR 2.0.1

• Agent 2.3.0:

– This release includes the following bugfixes:

* Fix requester and replier reuse behavior (#318)

* Increase cmake minimum required according to fastdds (#323)

– This release includes the following minor changes:

* Bump internal Micro XRCE-DDS Client to v2.3.0

* Bump Fast DDS to v2.9.0

* Bump Fast CDR to v1.0.26

• Client 2.3.0:

– This release includes the following bugfixes:

* Increase cmake minimum required (#335)

– This release includes the following minor changes:

* Bump Micro CDR to v2.0.1

• Micro-CDR 2.0.1:

5.17. Version 2.3.0 103

https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/348
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/340
https://github.com/eProsima/Micro-CDR/releases/tag/v2.0.1
https://github.com/eProsima/Micro-XRCE-DDS-Gen/releases/tag/v2.0.0
https://github.com/eProsima/Micro-XRCE-DDS-Gen/pull/47
https://github.com/eProsima/Micro-XRCE-DDS-Gen/pull/43
https://github.com/eProsima/Micro-XRCE-DDS-Gen/pull/59
https://github.com/eProsima/Micro-XRCE-DDS-Gen/pull/61
https://github.com/eProsima/Micro-XRCE-DDS-Gen/pull/60
https://github.com/eProsima/Micro-XRCE-DDS-Gen/pull/48
https://github.com/eProsima/Micro-XRCE-DDS-Gen/pull/58
https://github.com/eProsima/Micro-XRCE-DDS-Gen/pull/53
https://github.com/eProsima/Micro-XRCE-DDS-Gen/pull/46
https://github.com/eProsima/Micro-XRCE-DDS-Gen/pull/49
https://github.com/eProsima/Micro-XRCE-DDS-Agent/releases/tag/v2.3.0
https://github.com/eProsima/Micro-XRCE-DDS-Agent/pull/318
https://github.com/eProsima/Micro-XRCE-DDS-Agent/pull/323
https://github.com/eProsima/Micro-XRCE-DDS-Client/releases/tag/v2.3.0
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/335
https://github.com/eProsima/Micro-CDR/releases/tag/v2.0.1

MicroXRCE-DDS Documentation, Release 2.1.1

– This release includes the following bugfixes:

* Remove COMPILE_LANGUAGE:CXX from set_common_compile_options (#71)

* Increase cmake minimum required (#72)

5.18 Version 2.2.1

Agent 2.2.1 | Client 2.2.1 | Micro-CDR 2.0.0

• Agent 2.2.1:

– This release includes the following bugfixes:

* Fix exception on Heartbeat filter (#314)

* Fix default QoS in Requester and Replier (#313)

– This release includes the following minor changes:

* Bump Fast DDS to v2.8 and Fast CDR to v1.0.24 (#315)

• Client 2.2.1:

– This release includes the following bugfixes:

* Check setsockopt return (#325)

• Micro-CDR 2.0.0:

– This release is not modified

5.19 Version 2.2.0

Agent 2.2.0 | Client 2.2.0 | Micro-CDR 2.0.0

• Agent 2.2.0:

– This release includes the following bugfixes:

* Fix select timeout format (#311)

* Default services to preallocated with realloc (#310)

– This release includes the following minor changes:

* Implement hard liveliness check (#308)

• Client 2.2.0:

– This release includes the following bugfixes:

* SuperBuild.cmake: pass C, CXX and LINKER flags too (#315)

* Add a nopoll version of the POSIX TCP transport profile (#318)

* Fix wait_session_status listen timeout (#322)

– This release includes the following minor changes:

* Implement hard liveliness check (#316)

• Micro-CDR 2.0.0:

– This release is not modified

104 Chapter 5. Structure of the documentation

https://github.com/eProsima/Micro-CDR/pull/71
https://github.com/eProsima/Micro-CDR/pull/72
https://github.com/eProsima/Micro-XRCE-DDS-Agent/releases/tag/v2.2.1
https://github.com/eProsima/Micro-XRCE-DDS-Agent/pull/314
https://github.com/eProsima/Micro-XRCE-DDS-Agent/pull/313
https://github.com/eProsima/Micro-XRCE-DDS-Agent/pull/315
https://github.com/eProsima/Micro-XRCE-DDS-Client/releases/tag/v2.2.1
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/325
https://github.com/eProsima/Micro-CDR/releases/tag/v2.0.0
https://github.com/eProsima/Micro-XRCE-DDS-Agent/releases/tag/v2.2.0
https://github.com/eProsima/Micro-XRCE-DDS-Agent/pull/311
https://github.com/eProsima/Micro-XRCE-DDS-Agent/pull/310
https://github.com/eProsima/Micro-XRCE-DDS-Agent/pull/308
https://github.com/eProsima/Micro-XRCE-DDS-Client/releases/tag/v2.2.0
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/315
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/318
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/322
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/316
https://github.com/eProsima/Micro-CDR/releases/tag/v2.0.0

MicroXRCE-DDS Documentation, Release 2.1.1

5.20 Version 2.1.1

Agent 2.1.1 | Client 2.1.1 | Micro-CDR 2.0.0

• Agent 2.1.1:

– This release includes the following bugfixes:

* Fix write destination id (#292)

* Add sub entities destruction on FastDDS entities (#295)

* Add reuse socket to TCP agent (#301)

* Fix linux compile (#297)

– This release includes the following minor changes:

* Add CAN payload len on first frame byte (#293)

* Add CAN transport flag to cmake / Upgrade splog version (#296)

* Add Twitter and Readthedocs shields (backport #298) (#299)

* Add use system spdlog flag (#303)

* Implement GET_STATUS implementation result (#304)

• Client 2.1.1:

– This release includes the following bugfixes:

* Fix fragment capacity overflow (#296)

* Fix fragmentation header alignment (#300)

* Fix run session timeouts (#299)

* Fix code scanning alert (#302)

* Fix exit run session condition (#305)

* Fix multithread interlock (#303)

* Reset stream on created session (#304)

* Fix subscriber example (#309)

* Fix Req Res example (#314)

– This release includes the following minor changes:

* RTEMS Serial Transport support (#297)

* Add payload lenght on CAN messages (#298)

* Add Twitter and Readthedocs shields (#307)

* Implement GET_STATUS implementation result (#312)

• Micro-CDR 2.0.0:

– This release is not modified

5.20. Version 2.1.1 105

https://github.com/eProsima/Micro-XRCE-DDS-Agent/releases/tag/v2.1.1
https://github.com/eProsima/Micro-XRCE-DDS-Agent/pull/292
https://github.com/eProsima/Micro-XRCE-DDS-Agent/pull/295
https://github.com/eProsima/Micro-XRCE-DDS-Agent/pull/301
https://github.com/eProsima/Micro-XRCE-DDS-Agent/pull/297
https://github.com/eProsima/Micro-XRCE-DDS-Agent/pull/293
https://github.com/eProsima/Micro-XRCE-DDS-Agent/pull/296
https://github.com/eProsima/Micro-XRCE-DDS-Agent/pull/299
https://github.com/eProsima/Micro-XRCE-DDS-Agent/pull/303
https://github.com/eProsima/Micro-XRCE-DDS-Agent/pull/304
https://github.com/eProsima/Micro-XRCE-DDS-Client/releases/tag/v2.1.1
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/296
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/300
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/299
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/302
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/305
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/303
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/304
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/309
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/314
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/297
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/298
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/307
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/312
https://github.com/eProsima/Micro-CDR/releases/tag/v2.0.0

MicroXRCE-DDS Documentation, Release 2.1.1

5.21 Version 2.1.0

Agent 2.1.0 | Client 2.1.0 | Micro-CDR 2.0.0

• Agent 2.1.0:

– This release includes the following bugfixes:

* Style corrections (#238)

* Fix packaging test (#241)

* Fix serial error detection (#251)

* Server: Add wait for error_handle (#252)

* Fix use FastDDS profiles (#260)

* Fix session key log (#265)

* Fix custom transport bug (#259)

* Add missing define if logger is disabled (#267)

* Fix warning when CED disabled (#272)

* FramingIO optimizations (#278)

* Fix stream type on entities creation/destruction (#284)

– This release includes the following minor changes:

* Add wait for a serial port connection (#246)

* Set runtime check for discovery and p2p protocols (#254)

* Add flag for using system Fast-CDR (#255, #256)

* Add LOG_INFO traces when entities are created (#257)

* Add stop functionality (#268)

– This release includes the following major changes:

* Client shared memory support (#236)

* Binary entity creation mode (#239, #245, #248, #250, #273)

* Off-standard 64 kB write limit tweak (#249)

* Multiserial agent functionality (#253, #262)

* Build agent with Android NDK (#280, #282, #283)

* Incoming heartbeats filter (#277)

* Support for CAN/FD (#285)

* Updated Fast-DDS to v2.4.1 and Fast-CDR to v1.0.22

• Client 2.1.0:

– This release includes the following bugfixes:

* Minor fixes in FreeRTOS (#236, #239, #270)

* Style corrections (#222, #223, #231, #237, #247, #248)

* Fix missing declarations of inet_to family for POSIX_NOPOLL (#272)

106 Chapter 5. Structure of the documentation

https://github.com/eProsima/Micro-XRCE-DDS-Agent/releases/tag/v2.1.0
https://github.com/eProsima/Micro-XRCE-DDS-Agent/pull/238
https://github.com/eProsima/Micro-XRCE-DDS-Agent/pull/241
https://github.com/eProsima/Micro-XRCE-DDS-Agent/pull/251
https://github.com/eProsima/Micro-XRCE-DDS-Agent/pull/252
https://github.com/eProsima/Micro-XRCE-DDS-Agent/pull/260
https://github.com/eProsima/Micro-XRCE-DDS-Agent/pull/265
https://github.com/eProsima/Micro-XRCE-DDS-Agent/pull/259
https://github.com/eProsima/Micro-XRCE-DDS-Agent/pull/267
https://github.com/eProsima/Micro-XRCE-DDS-Agent/pull/272
https://github.com/eProsima/Micro-XRCE-DDS-Agent/pull/278
https://github.com/eProsima/Micro-XRCE-DDS-Agent/pull/284
https://github.com/eProsima/Micro-XRCE-DDS-Agent/pull/246
https://github.com/eProsima/Micro-XRCE-DDS-Agent/pull/254
https://github.com/eProsima/Micro-XRCE-DDS-Agent/pull/255
https://github.com/eProsima/Micro-XRCE-DDS-Agent/pull/256
https://github.com/eProsima/Micro-XRCE-DDS-Agent/pull/257
https://github.com/eProsima/Micro-XRCE-DDS-Agent/pull/268
https://github.com/eProsima/Micro-XRCE-DDS-Agent/pull/236
https://github.com/eProsima/Micro-XRCE-DDS-Agent/pull/239
https://github.com/eProsima/Micro-XRCE-DDS-Agent/pull/245
https://github.com/eProsima/Micro-XRCE-DDS-Agent/pull/248
https://github.com/eProsima/Micro-XRCE-DDS-Agent/pull/250
https://github.com/eProsima/Micro-XRCE-DDS-Agent/pull/273
https://github.com/eProsima/Micro-XRCE-DDS-Agent/pull/249
https://github.com/eProsima/Micro-XRCE-DDS-Agent/pull/253
https://github.com/eProsima/Micro-XRCE-DDS-Agent/pull/262
https://github.com/eProsima/Micro-XRCE-DDS-Agent/pull/280
https://github.com/eProsima/Micro-XRCE-DDS-Agent/pull/282
https://github.com/eProsima/Micro-XRCE-DDS-Agent/pull/283
https://github.com/eProsima/Micro-XRCE-DDS-Agent/pull/277
https://github.com/eProsima/Micro-XRCE-DDS-Agent/pull/285
https://github.com/eProsima/Micro-XRCE-DDS-Client/releases/tag/v2.1.0
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/236
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/239
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/270
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/222
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/223
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/231
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/237
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/247
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/248
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/272

MicroXRCE-DDS Documentation, Release 2.1.1

* Modified heartbeat calculations (#251)

* FramingIO performance improvements (#259, #267)

* Fix conditional compilation Shapes Demo Windows (#262)

* Fix uxr_run_session_until_all_status (#279)

* Add check to stream type on fragmented output (#293)

– This release includes the following minor changes:

* Doxygen updates (#226, #229, #292)

* XRCE-DDS sessions runs at least once when timeout is 0 ms (#212)

* Add argument to continuous fragment mode callback (#260)

* Add flag to force micro-CDR build (#264)

* Support building for Android with NDK. (#269)

* Allow for pinging once and and return (#282)

* Allow wait session with no timeout (#280)

– This release includes the following major changes:

* Binary entity creation mode (#224, #232, #241, #246, #266)

* Multithread support and shared memory transport (#216, #234, #240, #243, #245, #238, #263,
#274, #289, #290, #291, #294)

* Off-standard 64 kB write limit tweak (#244)

* Support for CAN/FD (#278, #284)

* Support for RTEMS RTOS (#283, #287)

• Micro-CDR 2.0.0:

– This release includes the following bugfixes:

* Fixed buffer handling in fragmentation for compatibility with FastDDS (#69).

– This release includes the following minor changes:

* Only add -wsign-conversion if supported (#68)

* Avoid enabling CXX language (#67)

* Fix memcmp in tests (#66)

* Only add -wdouble-promotion if supported (#65)

* Update ABI Stability section (#64)

5.21. Version 2.1.0 107

https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/251
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/259
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/267
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/262
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/279
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/293
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/226
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/229
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/292
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/212
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/260
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/264
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/269
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/282
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/280
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/224
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/232
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/241
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/246
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/266
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/216
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/234
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/240
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/243
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/245
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/238
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/263
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/274
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/289
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/290
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/291
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/294
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/244
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/278
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/284
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/283
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/287
https://github.com/eProsima/Micro-CDR/releases/tag/v2.0.0
https://github.com/eProsima/Micro-CDR/pull/69
https://github.com/eProsima/Micro-CDR/pull/68
https://github.com/eProsima/Micro-CDR/pull/67
https://github.com/eProsima/Micro-CDR/pull/66
https://github.com/eProsima/Micro-CDR/pull/65
https://github.com/eProsima/Micro-CDR/pull/64

MicroXRCE-DDS Documentation, Release 2.1.1

5.22 Version 2.0.0

Agent 2.0.0 | Client 2.0.0 | Micro-CDR 1.2.1

This version includes the following changes in both Agent and Client:

• Agent 2.0.0:

– Add

* Micro XRCE-DDS Agent Snap package

* Middleware callbacks API

* Client to Agent ping feature without a session

* Custom transports API

– Fix / Modify

* Simplified CLI and removed dependency with CLI11 library.

* Optional disable of executable build.

* CLI help console output.

* Removed platform handling in user API.

• Client 2.0.0:

– Add

* POSIX transport with based on timeout instad of polling.

* Client to Agent ping feature without a session

* Continuos fragment mode

* FreeRTOS+TCP transport support

* Zephyr RTOS time functions support

* Custom transports API

* DDS-XRCE best effort examples

* uxr_run_session_until_data functionality

* uxr_create_session_retries functionality

* uxr_buffer_topic functionality

– Fix / Modify

* Update session creating timing to linear approach

* Modified uxr_prepare_output_stream API return code

* Removed client.config file in favor of CMake arguments.

* Removed platform handling in user API.

* Bugfix #156 request/reply lenght management.

* Bugfix #167 reliable fragment slots management.

* Bugfix #175 reliable fragment size management.

* Bugfix #176 discovery message deserialization.

108 Chapter 5. Structure of the documentation

https://snapcraft.io/micro-xrce-dds-agent
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/192
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/156
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/167
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/175
https://github.com/eProsima/Micro-XRCE-DDS-Client/pull/176

MicroXRCE-DDS Documentation, Release 2.1.1

• Micro-CDR 1.2.1:

– Fix / Modify

* Bugfix #53 fix in ucdr_reset_buffer function

* Bugfix #54 fix alignment zero-length sequence bug

* Bugfix #55 fix asymmetric fragmentation buffers

5.23 Version 1.3.0

Agent 1.4.0 | Client 1.2.3

This version includes the following changes in both Agent and Client:

• Agent 1.4.0:

– Add

* FastDDS middleware (compatible with ROS 2 Foxy).

– Fix

* TermiosAgent’s baudrate setting.

• Client 1.2.3:

– Modify

* Examples installation.

– Fix

* Minor Windows visibility function fixes.

5.24 Previous Versions

5.24.1 Version 1.2.0

Agent 1.3.0 | Client 1.2.1

This version includes the following changes in both Agent and Client:

• Agent 1.3.0

– Add

* IPv6 support.

* Requester/Replier support.

* Packaging compatibility with colcon.

* Isolated installation option.

* Raspberry Pi support.

– Change

* Serial transport.

• Client 1.2.1

5.23. Version 1.3.0 109

https://github.com/eProsima/Micro-CDR/pull/53
https://github.com/eProsima/Micro-CDR/pull/54
https://github.com/eProsima/Micro-CDR/pull/55

MicroXRCE-DDS Documentation, Release 2.1.1

– Add

* IPv6 support.

* Requester/Replier support.

* Packaging compatibility with colcon.

* Isolated installation option.

5.24.2 Version 1.1.0

Agent 1.1.0 | Client 1.1.1

This version includes the following changes in both Agent and Client:

• Agent 1.1.0:

– Add

* Message fragmentation.

* P2P communication.

* API.

* Time synchronization.

* Windows discovery support.

* New unitary tests.

* API documentation.

* Logger.

* Command Line Interface.

* Centralized middleware.

* Remove Asio dependency.

– Change

* CMake approach.

* Server’s thread pattern.

* Fast RTPS version upgraded to 1.8.0.

– Fix

* Serial transport.

• Client 1.1.1:

– Add

* Message fragmentation.

* Time synchronization.

* Windows discovery support.

* New unitary tests.

* API documentation.

* Raspberry Pi support.

110 Chapter 5. Structure of the documentation

MicroXRCE-DDS Documentation, Release 2.1.1

– Change

* Memory usage improvement.

* CMake approach.

* Discovery API.

* Examples usage.

– Fix

* Acknack reading.

* User data bad alignment.

5.24.3 Version 1.0.3

Agent 1.0.3 | Client 1.0.2

This version includes the following changes in both Agent and Client:

• Agent 1.0.3:

– Fast RTPS version upgraded to 1.7.2.

– Baud rate support improvements.

– Bugfixes.

• Client 1.0.2:

– Uses new Fast RTPS 1.7.2 XML format.

– Add Raspberry Pi toolchain.

– Fix bugs.

5.24.4 Version 1.0.2

Agent 1.0.2 | Client 1.0.1

This version includes the following changes in the Agent:

• Agent 1.0.2:

– Fast RTPS version upgraded to 1.7.0.

– Added dockerfile.

– Documentation fixes.

5.24.5 Version 1.0.1

Agent 1.0.1 | Client 1.0.1

This release includes the following changes in both Agent and Client:

• Agent 1.0.1:

– Fixed Windows installation.

– Fast CDR version upgraded.

5.24. Previous Versions 111

MicroXRCE-DDS Documentation, Release 2.1.1

– Simplified CMake code.

– Bug fixes.

• Client 1.0.1:

– Fixed Windows configuration.

– MicroCDR version upgraded.

– Cleaned unused code.

– Fixed documentation.

– Bug fixes.

5.24.6 Version 1.0.0

This release includes the following features:

• Extended C topic code generation tool (strings, sequences, and n-dimensional arrays).

• Discovery profile.

• Native write access profile (without using eProsima Micro XRCE-DDS Gen)

• Creation and configuration by XML.

• Creation by reference.

• Added REUSE flag at entities creation.

• Added prefix to functions.

• Transport stack modification.

• More tests.

• Reorganized project.

• Bug fixes.

• API changes.

5.24.7 Version 1.0.0Beta2

This release includes the following features:

• Reliability.

• Stream concept (best-effort, reliable).

• Multiples streams of the same type.

• Configurable data delivery control.

• C Topic example code generation tool.

112 Chapter 5. Structure of the documentation

	Main Features
	Installation
	User manual
	eProsima Micro XRCE-DDS Gen
	Structure of the documentation

